Suppr超能文献

宿主-寄生虫相互作用与倍性的进化

Host-parasite interactions and the evolution of ploidy.

作者信息

Nuismer Scott L, Otto Sarah P

机构信息

Department of Biological Sciences, University of Idaho, Moscow, 83844, USA.

出版信息

Proc Natl Acad Sci U S A. 2004 Jul 27;101(30):11036-9. doi: 10.1073/pnas.0403151101. Epub 2004 Jul 13.

Abstract

Although the majority of animals and plants, including humans, are dominated by the diploid phase of their life cycle, extensive diversity in ploidy level exists among eukaryotes, with some groups being primarily haploid whereas others alternate between haploid and diploid phases. Previous theory has illuminated conditions that favor the evolution of increased or decreased ploidy but has shed little light on which species should be primarily haploid and which primarily diploid. Here, we report a discovery that emerged from host-parasite models in which ploidy levels were allowed to evolve: selection is more likely to favor diploidy in host species and haploidy in parasite species. Essentially, when parasites must evade a host's immune system or defense response, selection favors parasitic individuals that express a narrow array of antigens and elicitors, thus favoring haploid parasites over diploid parasites. Conversely, when hosts must recognize a parasite before mounting a defensive response, selection favors hosts with a broader arsenal of recognition molecules, thus favoring diploid hosts over haploid hosts. These results are consistent with the predominance of haploidy among parasitic protists.

摘要

尽管包括人类在内的大多数动植物在其生命周期中以二倍体阶段为主,但真核生物的倍性水平存在广泛差异,有些类群主要是单倍体,而另一些则在单倍体和二倍体阶段之间交替。先前的理论阐明了有利于倍性增加或减少进化的条件,但对于哪些物种应主要为单倍体以及哪些应主要为二倍体却鲜有说明。在此,我们报告了一项源于允许倍性水平进化的宿主 - 寄生虫模型的发现:选择更有可能有利于宿主物种中的二倍体和寄生虫物种中的单倍体。从本质上讲,当寄生虫必须逃避宿主的免疫系统或防御反应时,选择有利于表达一系列有限抗原和诱导物的寄生个体,因此有利于单倍体寄生虫而非二倍体寄生虫。相反,当宿主在发起防御反应之前必须识别寄生虫时,选择有利于拥有更广泛识别分子库的宿主,因此有利于二倍体宿主而非单倍体宿主。这些结果与寄生原生生物中单倍体的优势一致。

相似文献

1
Host-parasite interactions and the evolution of ploidy.
Proc Natl Acad Sci U S A. 2004 Jul 27;101(30):11036-9. doi: 10.1073/pnas.0403151101. Epub 2004 Jul 13.
2
Heterozygote advantage and the evolution of a dominant diploid phase.
Genetics. 1992 Dec;132(4):1195-8. doi: 10.1093/genetics/132.4.1195.
3
Driven apart: the evolution of ploidy differences between the sexes under antagonistic selection.
Am Nat. 2014 Jan;183(1):96-107. doi: 10.1086/674025. Epub 2013 Nov 22.
4
Evolution of haploid-diploid life cycles when haploid and diploid fitnesses are not equal.
Evolution. 2017 Feb;71(2):215-226. doi: 10.1111/evo.13125. Epub 2016 Dec 1.
5
Ploidy and the evolution of parasitism.
Proc Biol Sci. 2011 Sep 22;278(1719):2814-22. doi: 10.1098/rspb.2010.2146. Epub 2011 Feb 2.
7
Evolution of haploid selection in predominantly diploid organisms.
Proc Natl Acad Sci U S A. 2015 Dec 29;112(52):15952-7. doi: 10.1073/pnas.1512004112. Epub 2015 Dec 15.
8
Host-parasite interactions and the evolution of nonrandom mating.
Evolution. 2014 Dec;68(12):3570-80. doi: 10.1111/evo.12538. Epub 2014 Nov 20.
9
Coevolutionary interactions between a haploid species and a diploid species.
J Math Biol. 2001 Feb;42(2):175-94. doi: 10.1007/s002850100071.
10
Similarity selection and the evolution of sex: revisiting the red queen.
PLoS Biol. 2006 Aug;4(8):e265. doi: 10.1371/journal.pbio.0040265.

引用本文的文献

1
Complex Endosymbioses I: From Primary to Complex Plastids, Serial Endosymbiotic Events.
Methods Mol Biol. 2024;2776:21-41. doi: 10.1007/978-1-0716-3726-5_2.
2
Mate choice is affected by parasite infestation rate of the choosing individual as well as of potential mating partners.
Curr Zool. 2022 Sep 25;69(5):559-567. doi: 10.1093/cz/zoac076. eCollection 2023 Oct.
3
Diploid-dominant life cycles characterize the early evolution of Fungi.
Proc Natl Acad Sci U S A. 2022 Sep 6;119(36):e2116841119. doi: 10.1073/pnas.2116841119. Epub 2022 Aug 29.
4
Coevolutionary theory of hosts and parasites.
J Evol Biol. 2022 Feb;35(2):205-224. doi: 10.1111/jeb.13981. Epub 2022 Jan 30.
5
Virulence phenotypes result from interactions between pathogen ploidy and genetic background.
Ecol Evol. 2020 Aug 7;10(17):9326-9338. doi: 10.1002/ece3.6619. eCollection 2020 Sep.
6
On the difficult evolutionary transition from the free-living lifestyle to obligate symbiosis.
PLoS One. 2020 Jul 30;15(7):e0235811. doi: 10.1371/journal.pone.0235811. eCollection 2020.
7
Effects of soil nitrogen on diploid advantage in fireweed, (Onagraceae).
Ecol Evol. 2018 Dec 26;9(3):1095-1109. doi: 10.1002/ece3.4797. eCollection 2019 Feb.
8
Identifying coevolving loci using interspecific genetic correlations.
Ecol Evol. 2017 Jul 28;7(17):6894-6903. doi: 10.1002/ece3.3107. eCollection 2017 Sep.
9
Hyperdiverse gene cluster in snail host conveys resistance to human schistosome parasites.
PLoS Genet. 2015 Mar 16;11(3):e1005067. doi: 10.1371/journal.pgen.1005067. eCollection 2015 Mar.
10
Is more better? Polyploidy and parasite resistance.
Biol Lett. 2012 Aug 23;8(4):598-600. doi: 10.1098/rsbl.2011.1152. Epub 2012 Jan 18.

本文引用的文献

2
Fitness costs of R-gene-mediated resistance in Arabidopsis thaliana.
Nature. 2003 May 1;423(6935):74-7. doi: 10.1038/nature01588.
3
Evolution of virulence in a plant host-pathogen metapopulation.
Science. 2003 Mar 14;299(5613):1735-7. doi: 10.1126/science.1080070.
4
General models of multilocus evolution.
Genetics. 2002 Aug;161(4):1727-50. doi: 10.1093/genetics/161.4.1727.
5
Genetically controlled expression of surface variant antigens in free-living protozoa.
J Membr Biol. 2001 Mar 15;180(2):101-9. doi: 10.1007/s002320010062.
6
Inheritance of resistance to ear damage caused by Sesamia nonagrioides (Lepidoptera: Noctuidae) in maize.
J Econ Entomol. 2001 Feb;94(1):277-83. doi: 10.1603/0022-0493-94.1.277.
7
The molecular karyotype of the megabase chromosomes of Trypanosoma brucei stock 427.
Mol Biochem Parasitol. 2000 Dec;111(2):261-73. doi: 10.1016/s0166-6851(00)00316-9.
8
Mate selection and the evolution of highly polymorphic self/nonself recognition genes.
Science. 2000 Sep 22;289(5487):2111-4. doi: 10.1126/science.289.5487.2111.
9
The genetic architecture of resistance.
Curr Opin Plant Biol. 2000 Aug;3(4):285-90. doi: 10.1016/s1369-5266(00)00081-9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验