Suppr超能文献

反复出现的小脑结构解决了运动误差问题。

Recurrent cerebellar architecture solves the motor-error problem.

作者信息

Porrill John, Dean Paul, Stone James V

机构信息

Department of Psychology, The University of Sheffield, Sheffield S10 2UR, UK.

出版信息

Proc Biol Sci. 2004 Apr 22;271(1541):789-96. doi: 10.1098/rspb.2003.2658.

Abstract

Current views of cerebellar function have been heavily influenced by the models of Marr and Albus, who suggested that the climbing fibre input to the cerebellum acts as a teaching signal for motor learning. It is commonly assumed that this teaching signal must be motor error (the difference between actual and correct motor command), but this approach requires complex neural structures to estimate unobservable motor error from its observed sensory consequences. We have proposed elsewhere a recurrent decorrelation control architecture in which Marr-Albus models learn without requiring motor error. Here, we prove convergence for this architecture and demonstrate important advantages for the modular control of systems with multiple degrees of freedom. These results are illustrated by modelling adaptive plant compensation for the three-dimensional vestibular ocular reflex. This provides a functional role for recurrent cerebellar connectivity, which may be a generic anatomical feature of projections between regions of cerebral and cerebellar cortex.

摘要

当前对小脑功能的看法在很大程度上受到马尔和阿尔布斯模型的影响,他们认为小脑的攀缘纤维输入作为运动学习的一种教学信号。人们通常认为这种教学信号必定是运动误差(实际运动指令与正确运动指令之间的差异),但这种方法需要复杂的神经结构来从观察到的感觉结果中估计不可观察的运动误差。我们在其他地方提出了一种递归去相关控制架构,其中马尔 - 阿尔布斯模型在不需要运动误差的情况下进行学习。在这里,我们证明了该架构的收敛性,并展示了其在多自由度系统模块化控制方面的重要优势。通过对三维前庭眼反射的自适应植物补偿建模来说明这些结果。这为递归小脑连接提供了一种功能作用,这可能是大脑皮层和小脑皮层区域之间投射的一种普遍解剖学特征。

相似文献

1
Recurrent cerebellar architecture solves the motor-error problem.
Proc Biol Sci. 2004 Apr 22;271(1541):789-96. doi: 10.1098/rspb.2003.2658.
2
Visual awareness and the cerebellum: possible role of decorrelation control.
Prog Brain Res. 2004;144:61-75. doi: 10.1016/S0079-6123(03)14404-4.
3
Implications of different classes of sensorimotor disturbance for cerebellar-based motor learning models.
Biol Cybern. 2009 Jan;100(1):81-95. doi: 10.1007/s00422-008-0266-5. Epub 2008 Oct 22.
5
Input minimization: a model of cerebellar learning without climbing fiber error signals.
Neuroreport. 2001 Dec 4;12(17):3825-31. doi: 10.1097/00001756-200112040-00045.
6
Recurrent cerebellar loops simplify adaptive control of redundant and nonlinear motor systems.
Neural Comput. 2007 Jan;19(1):170-93. doi: 10.1162/neco.2007.19.1.170.
7
The cerebellum and VOR/OKR learning models.
Trends Neurosci. 1992 Nov;15(11):445-53. doi: 10.1016/0166-2236(92)90008-v.
10
Cerebellum-dependent learning: the role of multiple plasticity mechanisms.
Annu Rev Neurosci. 2004;27:581-609. doi: 10.1146/annurev.neuro.27.070203.144238.

引用本文的文献

1
Emergence of syntax and word prediction in an artificial neural circuit of the cerebellum.
Nat Commun. 2024 Jan 31;15(1):927. doi: 10.1038/s41467-024-44801-6.
2
A cerebellum inspired spiking neural network as a multi-model for pattern classification and robotic trajectory prediction.
Front Neurosci. 2022 Nov 28;16:909146. doi: 10.3389/fnins.2022.909146. eCollection 2022.
3
Dual STDP processes at Purkinje cells contribute to distinct improvements in accuracy and speed of saccadic eye movements.
PLoS Comput Biol. 2022 Oct 4;18(10):e1010564. doi: 10.1371/journal.pcbi.1010564. eCollection 2022 Oct.
4
Did We Get Sensorimotor Adaptation Wrong? Implicit Adaptation as Direct Policy Updating Rather than Forward-Model-Based Learning.
J Neurosci. 2021 Mar 24;41(12):2747-2761. doi: 10.1523/JNEUROSCI.2125-20.2021. Epub 2021 Feb 8.
5
A multizone cerebellar chip for bioinspired adaptive robot control and sensorimotor processing.
J R Soc Interface. 2021 Jan;18(174):20200750. doi: 10.1098/rsif.2020.0750. Epub 2021 Jan 27.
6
A Neuroanatomically Grounded Optimal Control Model of the Compensatory Eye Movement System in Mice.
Front Syst Neurosci. 2020 Mar 25;14:13. doi: 10.3389/fnsys.2020.00013. eCollection 2020.
7
Sensorimotor maps can be dynamically calibrated using an adaptive-filter model of the cerebellum.
PLoS Comput Biol. 2019 Jul 11;15(7):e1007187. doi: 10.1371/journal.pcbi.1007187. eCollection 2019 Jul.
8
Spike burst-pause dynamics of Purkinje cells regulate sensorimotor adaptation.
PLoS Comput Biol. 2019 Mar 12;15(3):e1006298. doi: 10.1371/journal.pcbi.1006298. eCollection 2019 Mar.
9
Motivation dynamically increases noise resistance by internal feedback during movement.
Neuropsychologia. 2019 Feb 4;123:19-29. doi: 10.1016/j.neuropsychologia.2018.07.011. Epub 2018 Jul 11.
10
Computational Principles of Supervised Learning in the Cerebellum.
Annu Rev Neurosci. 2018 Jul 8;41:233-253. doi: 10.1146/annurev-neuro-080317-061948.

本文引用的文献

1
Brain-machine interfaces to restore motor function and probe neural circuits.
Nat Rev Neurosci. 2003 May;4(5):417-22. doi: 10.1038/nrn1105.
2
Inhibitory control of olivary discharge.
Ann N Y Acad Sci. 2002 Dec;978:219-31. doi: 10.1111/j.1749-6632.2002.tb07569.x.
3
An unfolded map of the cerebellar dentate nucleus and its projections to the cerebral cortex.
J Neurophysiol. 2003 Jan;89(1):634-9. doi: 10.1152/jn.00626.2002.
8
Expanding cerebellar horizons.
Trends Cogn Sci. 2001 Apr 1;5(4):135-136. doi: 10.1016/s1364-6613(00)01635-1.
9
Role of the cerebellar flocculus region in cancellation of the VOR during passive whole body rotation.
J Neurophysiol. 2000 Sep;84(3):1599-613. doi: 10.1152/jn.2000.84.3.1599.
10
Functional connectivity between cerebellum and primary motor cortex in the awake monkey.
J Neurophysiol. 2000 Jul;84(1):585-90. doi: 10.1152/jn.2000.84.1.585.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验