Suppr超能文献

不同类型的感觉运动障碍对基于小脑的运动学习模型的影响。

Implications of different classes of sensorimotor disturbance for cerebellar-based motor learning models.

作者信息

Haith Adrian, Vijayakumar Sethu

机构信息

School of Informatics, University of Edinburgh, Edinburgh, EH8 9AB, UK.

出版信息

Biol Cybern. 2009 Jan;100(1):81-95. doi: 10.1007/s00422-008-0266-5. Epub 2008 Oct 22.

Abstract

The exact role of the cerebellum in motor control and learning is not yet fully understood. The structure, connectivity and plasticity within cerebellar cortex has been extensively studied, but the patterns of connectivity and interaction with other brain structures, and the computational significance of these patterns, is less well known and a matter of debate. Two contrasting models of the role of the cerebellum in motor adaptation have previously been proposed. Most commonly, the cerebellum is employed in a purely feedforward pathway, with its output contributing directly to the outgoing motor command. The cerebellum must then learn an inverse model of the motor apparatus in order to achieve accurate control. More recently, Porrill et al. (Proc Biol Sci 271(1541):789-796, 2004) and Porrill et al. (PLoS Comput Biol 3:1935-1950, 2007a) and Porrill et al. (Neural Comput 19(1), 170-193, 2007b) have highlighted the potential importance of these recurrent connections by proposing an alternative architecture in which the cerebellum is embedded in a recurrent loop with brainstem control circuitry. In this framework, the feedforward connections are not necessary at all. The cerebellum must learn a forward model of the motor apparatus for accurate motor commands to be generated. We show here how these two models exhibit contrasting yet complimentary learning capabilities. Central to the differences in performance between architectures is that there are two distinct kinds of disturbance to which a motor system may need to adapt (1) changes in the relationship between the motor command and the observed outcome and (2) changes in the relationship between the stimulus and the desired outcome. The computational distinction between these two kinds of transformation is subtle and has therefore often been overlooked. However, the implications for learning turn out to be significant: learning with a feedforward architecture is robust following changes in the stimulus-desired outcome mapping but not necessarily the motor command-outcome mapping, while learning with a recurrent architecture is robust under changes in the motor command-outcome mapping but not necessarily the stimulus-desired outcome mapping. We first analyse these differences theoretically and through simulations in the vestibulo-ocular reflex (VOR), then illustrate how these same concepts apply more generally with a model of reaching movements.

摘要

小脑在运动控制和学习中的确切作用尚未完全明了。小脑皮质的结构、连接性和可塑性已得到广泛研究,但其与其他脑结构的连接模式和相互作用,以及这些模式的计算意义,却鲜为人知且存在争议。此前曾提出两种关于小脑在运动适应中作用的截然不同的模型。最常见的是,小脑被用于纯粹的前馈通路,其输出直接作用于传出的运动指令。为了实现精确控制,小脑必须学习运动装置的逆模型。最近,波里尔等人(《英国皇家学会学报B:生物科学》271(1541):789 - 796,2004年)、波里尔等人(《公共科学图书馆·计算生物学》3:1935 - 1950,2007a)以及波里尔等人(《神经计算》19(1),170 - 193,2007b)通过提出一种替代架构突出了这些递归连接的潜在重要性,在该架构中,小脑嵌入到与脑干控制电路的递归回路中。在这个框架下,前馈连接根本就不必要。小脑必须学习运动装置的正向模型才能生成精确的运动指令。我们在此展示这两种模型如何呈现出截然不同但又互补的学习能力。不同架构在性能上存在差异的核心在于,运动系统可能需要适应两种截然不同的干扰:(1)运动指令与观察到的结果之间关系的变化,以及(2)刺激与期望结果之间关系的变化。这两种变换在计算上的区别很细微,因此常常被忽视。然而,其对学习的影响却很显著:在前馈架构下学习,在刺激 - 期望结果映射发生变化时具有鲁棒性,但在运动指令 - 结果映射变化时不一定如此;而在递归架构下学习,在运动指令 - 结果映射发生变化时具有鲁棒性,但在刺激 - 期望结果映射变化时不一定如此。我们首先从理论上并通过前庭眼反射(VOR)模拟分析这些差异,然后用一个伸手动作模型说明这些相同的概念如何更广泛地适用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验