Bennett Paula V, Cintron Nela S, Gros Laurent, Laval Jacques, Sutherland Betsy M
Department of Biology, Brookhaven National Laboratory, Upton, NY 11973-5000, USA.
Free Radic Biol Med. 2004 Aug 15;37(4):488-99. doi: 10.1016/j.freeradbiomed.2004.05.004.
Although clustered DNA damages are induced in cells by ionizing radiation and can be induced artifactually during DNA isolation, it was not known if they are formed in unirradiated cells by normal oxidative metabolism. Using high-sensitivity methods of quantitative gel electrophoresis, electronic imaging, and number average length analysis, we found that two radiosensitive human cell lines (TK6 and WI-L2-NS) accumulated Fpg-oxidized purine clusters and Nth-oxidized pyrimidine clusters but not Nfo-abasic clusters. However, four repair-proficient human lines (MOLT 4, HL-60, WTK1, and 28SC) did not contain significant levels (<5/Gbp) of any cluster type. Cluster levels were independent of p53 status. Measurement of glycosylase levels in 28SC, TK6, and WI-L2-NS cells suggested that depressed hOGG1 and hNth activities in TK6 and WI-L2-NS could be related to oxybase cluster accumulation. Thus, individuals with DNA repair enzyme deficiencies could accumulate potentially cytotoxic and mutagenic clustered DNA damages. The absence of Nfo-detected endogenous clusters in any cells examined suggests that abasic clusters could be a signature of cellular ionizing radiation exposure.