Khare Kedar, George Nicholas
The Institute of Optics, University of Rochester, Rochester, New York 14627, USA.
J Opt Soc Am A Opt Image Sci Vis. 2004 Jul;21(7):1179-85. doi: 10.1364/josaa.21.001179.
We show that a fractional version of the finite Fourier transform may be defined by using prolate spheroidal wave functions of order zero. The transform is linear and additive in its index and asymptotically goes over to Namias's definition of the fractional Fourier transform. As a special case of this definition, it is shown that the finite Fourier transform may be inverted by using information over a finite range of frequencies in Fourier space, the inversion being sensitive to noise. Numerical illustrations for both forward (fractional) and inverse finite transforms are provided.
我们表明,可以通过使用零阶扁长椭球波函数来定义有限傅里叶变换的分数形式。该变换在其指标上是线性且可加的,并且渐近地趋近于纳米亚斯对分数傅里叶变换的定义。作为此定义的一个特殊情况,结果表明可以通过使用傅里叶空间中有限频率范围内的信息来求有限傅里叶变换的逆变换,该逆变换对噪声敏感。提供了正向(分数)和逆有限变换的数值示例。