Riviere P, Busnengo H F, Martin F
Departamento de Quimica, Facultad de Ciencias C-9, Universidad Autonoma de Madrid, 28049 Madrid, Spain.
J Chem Phys. 2004 Jul 8;121(2):751-60. doi: 10.1063/1.1747970.
We present results of extensive density functional theory (DFT) calculations for H and H2 interacting with NiAl(110). Continuous representations of the full dimensional potential energy surface (PES) for the H/NiAl(110) and H2/NiAl(110) systems are obtained by interpolation of the DFT results using the corrugation reducing procedure. We find a minimum activation energy barrier of approximately 300 meV for dissociative adsorption of H2, which is consistent with the energy threshold obtained in molecular beam experiments for H2 (nu=0). We explain vibrational enhancement observed in experiments as the consequence of vibrational softening in the entrance channel over the most reactive surface site. The H2/NiAl(110) PES shows a high surface site selectivity: for energies up to 0.1 eV above threshold, H2 adsorption can only take place around top-Ni sites (within a circle of radius approximately 0.3 A). A strong energetic corrugation is observed: energy barriers for dissociation vary by more than 1 eV between the most and the least reactive sites. In contrast, geometric corrugation is much less pronounced and comparable to that of low index single metal surfaces like Cu or Pt.
我们展示了氢(H)和氢气(H₂)与NiAl(110)相互作用的大量密度泛函理论(DFT)计算结果。通过使用减少起伏程序对DFT结果进行插值,获得了H/NiAl(110)和H₂/NiAl(110)体系全维势能面(PES)的连续表示。我们发现H₂解离吸附的最小活化能垒约为300毫电子伏特,这与分子束实验中获得的H₂(ν = 0)能量阈值一致。我们将实验中观察到的振动增强解释为在最具反应活性的表面位点上,入射通道中振动软化的结果。H₂/NiAl(110)势能面显示出高表面位点选择性:对于高于阈值0.1电子伏特的能量,H₂吸附仅能发生在顶部镍位点周围(在半径约为0.3埃的圆内)。观察到强烈的能量起伏:最具反应活性和最不具反应活性的位点之间,解离的能垒变化超过1电子伏特。相比之下,几何起伏则不太明显,与Cu或Pt等低指数单金属表面相当。