Suppr超能文献

用于区分β-桶状膜蛋白的评分隐马尔可夫模型。

Scoring hidden Markov models to discriminate beta-barrel membrane proteins.

作者信息

Deng Yong, Liu Qi, Li Yi-Xue

机构信息

School of Electronics & Information Technology, Shanghai Jiao Tong University, Shanghai 200030, PR China.

出版信息

Comput Biol Chem. 2004 Jul;28(3):189-94. doi: 10.1016/j.compbiolchem.2004.02.004.

Abstract

A new method is presented for identification of beta-barrel membrane proteins. It is based on a hidden Markov model (HMM) with an architecture obeying these proteins' construction principles. Once the HMM is trained, log-odds score relative to a null model is used to discriminate beta-barrel membrane proteins from other proteins. The method achieves only 10% false positive and false negative rates in a six-fold cross-validation procedure. The results compare favorably with existing methods. This method is proposed to be a valuable tool to quickly scan proteomes of entirely sequenced organisms for beta-barrel membrane proteins.

摘要

提出了一种鉴定β-桶状膜蛋白的新方法。该方法基于一种隐马尔可夫模型(HMM),其结构遵循这些蛋白的构建原则。一旦训练好HMM,就使用相对于空模型的对数几率得分来区分β-桶状膜蛋白和其他蛋白。在六重交叉验证过程中,该方法的假阳性率和假阴性率仅为10%。其结果优于现有方法。该方法被认为是一种用于快速扫描全序列生物体蛋白质组中β-桶状膜蛋白的有价值工具。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验