Suppr超能文献

利用互补信息对细胞周期表达数据进行去卷积分析。

Deconvolving cell cycle expression data with complementary information.

作者信息

Bar-Joseph Ziv, Farkash Shlomit, Gifford David K, Simon Itamar, Rosenfeld Roni

机构信息

School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA.

出版信息

Bioinformatics. 2004 Aug 4;20 Suppl 1:i23-30. doi: 10.1093/bioinformatics/bth915.

Abstract

MOTIVATION

In the study of many systems, cells are first synchronized so that a large population of cells exhibit similar behavior. While synchronization can usually be achieved for a short duration, after a while cells begin to lose their synchronization. Synchronization loss is a continuous process and so the observed value in a population of cells for a gene at time t is actually a convolution of its values in an interval around t. Deconvolving the observed values from a mixed population will allow us to obtain better models for these systems and to accurately detect the genes that participate in these systems.

RESULTS

We present an algorithm which combines budding index and gene expression data to deconvolve expression profiles. Using the budding index data we first fit a synchronization loss model for the cell cycle system. Our deconvolution algorithm uses this loss model and can also use information from co-expressed genes, making it more robust against noise and missing values. Using expression and budding data for yeast we show that our algorithm is able to reconstruct a more accurate representation when compared with the observed values. In addition, using the deconvolved profiles we are able to correctly identify 15% more cycling genes when compared to a set identified using the observed values.

AVAILABILITY

Matlab implementation can be downloaded from the supporting website http://www.cs.cmu.edu/~zivbj/decon/decon.html

摘要

动机

在许多系统的研究中,细胞首先要进行同步化处理,以便大量细胞表现出相似的行为。虽然通常可以在短时间内实现同步化,但过一段时间后细胞就会开始失去同步性。同步性丧失是一个持续的过程,因此在时间t时一群细胞中某个基因的观测值实际上是其在t周围一个时间间隔内的值的卷积。对混合群体的观测值进行反卷积,将使我们能够为这些系统获得更好的模型,并准确检测参与这些系统的基因。

结果

我们提出了一种算法,该算法结合芽殖指数和基因表达数据来对表达谱进行反卷积。利用芽殖指数数据,我们首先为细胞周期系统拟合了一个同步性丧失模型。我们的反卷积算法使用了这个丧失模型,并且还可以使用共表达基因的信息,使其对噪声和缺失值更具鲁棒性。利用酵母的表达和芽殖数据,我们表明与观测值相比,我们的算法能够重建更准确的表示。此外,与使用观测值确定的一组基因相比,利用反卷积后的谱我们能够正确识别出多15%的循环基因。

可用性

Matlab实现可从支持网站http://www.cs.cmu.edu/~zivbj/decon/decon.html下载

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验