Department of Computer Science, Duke University, Durham, NC 27708, USA.
Proc Natl Acad Sci U S A. 2013 Mar 5;110(10):E968-77. doi: 10.1073/pnas.1120991110. Epub 2013 Feb 6.
Due to cell-to-cell variability and asymmetric cell division, cells in a synchronized population lose synchrony over time. As a result, time-series measurements from synchronized cell populations do not reflect the underlying dynamics of cell-cycle processes. Here, we present a branching process deconvolution algorithm that learns a more accurate view of dynamic cell-cycle processes, free from the convolution effects associated with imperfect cell synchronization. Through wavelet-basis regularization, our method sharpens signal without sharpening noise and can remarkably increase both the dynamic range and the temporal resolution of time-series data. Although applicable to any such data, we demonstrate the utility of our method by applying it to a recent cell-cycle transcription time course in the eukaryote Saccharomyces cerevisiae. Our method more sensitively detects cell-cycle-regulated transcription and reveals subtle timing differences that are masked in the original population measurements. Our algorithm also explicitly learns distinct transcription programs for mother and daughter cells, enabling us to identify 82 genes transcribed almost entirely in early G1 in a daughter-specific manner.
由于细胞间的可变性和不对称细胞分裂,同步化群体中的细胞随着时间的推移会失去同步性。因此,来自同步化细胞群体的时程测量不能反映细胞周期过程的潜在动力学。在这里,我们提出了一个分支过程解卷积算法,该算法可以学习到更准确的动态细胞周期过程视图,而不受与不完全细胞同步相关的卷积效应的影响。通过小波基正则化,我们的方法在不锐化噪声的情况下锐化信号,并且可以显著增加时程数据的动态范围和时间分辨率。虽然适用于任何此类数据,但我们通过将其应用于真核生物酿酒酵母最近的细胞周期转录时程来证明我们方法的实用性。我们的方法更灵敏地检测到细胞周期调控的转录,并揭示了在原始群体测量中被掩盖的微妙时间差异。我们的算法还明确地为母细胞和子细胞学习了不同的转录程序,使我们能够识别出 82 个基因,这些基因几乎完全以子细胞特异性的方式在早期 G1 转录。