Suppr超能文献

随机推理、自由能与信息几何。

Stochastic reasoning, free energy, and information geometry.

作者信息

Ikeda Shiro, Tanaka Toshiyuki, Amari Shun-ichi

机构信息

Institute of Statistical Mathematics, Tokyo 106-8569, Japan.

出版信息

Neural Comput. 2004 Sep;16(9):1779-810. doi: 10.1162/0899766041336477.

Abstract

Belief propagation (BP) is a universal method of stochastic reasoning. It gives exact inference for stochastic models with tree interactions and works surprisingly well even if the models have loopy interactions. Its performance has been analyzed separately in many fields, such as AI, statistical physics, information theory, and information geometry. This article gives a unified framework for understanding BP and related methods and summarizes the results obtained in many fields. In particular, BP and its variants, including tree reparameterization and concave-convex procedure, are reformulated with information-geometrical terms, and their relations to the free energy function are elucidated from an information-geometrical viewpoint. We then propose a family of new algorithms. The stabilities of the algorithms are analyzed, and methods to accelerate them are investigated.

摘要

信念传播(BP)是一种通用的随机推理方法。它能对具有树形交互的随机模型进行精确推理,并且即使模型具有循环交互,其效果也出奇地好。它的性能已在许多领域分别进行了分析,如人工智能、统计物理学、信息论和信息几何。本文给出了一个理解BP及相关方法的统一框架,并总结了在许多领域所取得的成果。特别地,BP及其变体,包括树形重新参数化和凹凸过程,用信息几何术语进行了重新表述,并从信息几何的角度阐明了它们与自由能函数的关系。然后我们提出了一族新算法。分析了算法的稳定性,并研究了加速算法的方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验