Mézard Marc, Mora Thierry
LPTMS, UMR CNRS et Univ. Paris-Sud, Orsay, France.
J Physiol Paris. 2009 Jan-Mar;103(1-2):107-13. doi: 10.1016/j.jphysparis.2009.05.013. Epub 2009 Jul 17.
A new field of research is rapidly expanding at the crossroad between statistical physics, information theory and combinatorial optimization. In particular, the use of cutting edge statistical physics concepts and methods allow one to solve very large constraint satisfaction problems like random satisfiability, coloring, or error correction. Several aspects of these developments should be relevant for the understanding of functional complexity in neural networks. On the one hand the message passing procedures which are used in these new algorithms are based on local exchange of information, and succeed in solving some of the hardest computational problems. On the other hand some crucial inference problems in neurobiology, like those generated in multi-electrode recordings, naturally translate into hard constraint satisfaction problems. This paper gives a non-technical introduction to this field, emphasizing the main ideas at work in message passing strategies and their possible relevance to neural networks modelling. It also introduces a new message passing algorithm for inferring interactions between variables from correlation data, which could be useful in the analysis of multi-electrode recording data.
一个新的研究领域正在统计物理学、信息论和组合优化的交叉点迅速扩展。特别是,前沿统计物理学概念和方法的使用使人们能够解决非常大的约束满足问题,如随机可满足性、着色或纠错。这些进展的几个方面应该与理解神经网络中的功能复杂性相关。一方面,这些新算法中使用的消息传递过程基于局部信息交换,并成功解决了一些最难的计算问题。另一方面,神经生物学中的一些关键推理问题,如多电极记录中产生的问题,自然会转化为硬约束满足问题。本文对该领域进行了非技术性介绍,强调了消息传递策略中起作用的主要思想及其与神经网络建模的可能相关性。它还介绍了一种新的消息传递算法,用于从相关数据中推断变量之间的相互作用,这可能对多电极记录数据分析有用。