Suppr超能文献

一种学习自我中心-他者中心转换的原则。

A principle for learning egocentric-allocentric transformation.

作者信息

Byrne Patrick, Becker Suzanna

机构信息

Department of Psychology, Neuroscience and Behavior, McMaster University, Hamilton, Ontario, L8S 4K1, Canada.

出版信息

Neural Comput. 2008 Mar;20(3):709-37. doi: 10.1162/neco.2007.10-06-361.

Abstract

Numerous single-unit recording studies have found mammalian hippocampal neurons that fire selectively for the animal's location in space, independent of its orientation. The population of such neurons, commonly known as place cells, is thought to maintain an allocentric, or orientation-independent, internal representation of the animal's location in space, as well as mediating long-term storage of spatial memories. The fact that spatial information from the environment must reach the brain via sensory receptors in an inherently egocentric, or viewpoint-dependent, fashion leads to the question of how the brain learns to transform egocentric sensory representations into allocentric ones for long-term memory storage. Additionally, if these long-term memory representations of space are to be useful in guiding motor behavior, then the reverse transformation, from allocentric to egocentric coordinates, must also be learned. We propose that orientation-invariant representations can be learned by neural circuits that follow two learning principles: minimization of reconstruction error and maximization of representational temporal inertia. Two different neural network models are presented that adhere to these learning principles, the first by direct optimization through gradient descent and the second using a more biologically realistic circuit based on the restricted Boltzmann machine (Hinton, 2002; Smolensky, 1986). Both models lead to orientation-invariant representations, with the latter demonstrating place-cell-like responses when trained on a linear track environment.

摘要

众多单单元记录研究发现,哺乳动物海马体神经元会根据动物在空间中的位置选择性地放电,而与动物的朝向无关。这类神经元群体,通常被称为位置细胞,被认为能够维持动物在空间中位置的非自我中心或朝向无关的内部表征,同时介导空间记忆的长期存储。环境中的空间信息必须通过本质上以自我为中心或依赖视角的感觉受体传入大脑,这一事实引发了一个问题:大脑如何学会将以自我为中心的感觉表征转化为用于长期记忆存储的非自我中心表征。此外,如果这些空间的长期记忆表征要用于指导运动行为,那么还必须学会从非自我中心坐标到自我中心坐标的反向转换。我们提出,遵循两个学习原则的神经回路可以学习到朝向不变的表征:重建误差最小化和表征时间惯性最大化。本文展示了两种遵循这些学习原则的不同神经网络模型,第一种通过梯度下降直接优化,第二种使用基于受限玻尔兹曼机的更具生物学现实性的回路(Hinton,2002;Smolensky,1986)。两种模型都能产生朝向不变的表征,后者在直线轨道环境中训练时表现出类似位置细胞的反应。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验