Basak Jayanta
IBM India Research Lab, Indian Institute of Technology, New Delhi-110048, India.
Neural Comput. 2004 Sep;16(9):1959-81. doi: 10.1162/0899766041336396.
Decision trees and neural networks are widely used tools for pattern classification. Decision trees provide highly localized representation, whereas neural networks provide a distributed but compact representation of the decision space. Decision trees cannot be induced in the online mode, and they are not adaptive to changing environment, whereas neural networks are inherently capable of online learning and adpativity. Here we provide a classification scheme called online adaptive decision trees (OADT), which is a tree-structured network like the decision trees and capable of online learning like neural networks. A new objective measure is derived for supervised learning with OADT. Experimental results validate the effectiveness of the proposed classification scheme. Also, with certain real-life data sets, we find that OADT performs better than two widely used models: the hierarchical mixture of experts and multilayer perceptron.
决策树和神经网络是广泛用于模式分类的工具。决策树提供高度局部化的表示,而神经网络提供决策空间的分布式但紧凑的表示。决策树不能以在线模式诱导生成,并且它们不适应变化的环境,而神经网络天生就能够进行在线学习和自适应。在这里,我们提供一种称为在线自适应决策树(OADT)的分类方案,它是一种像决策树一样的树状结构网络,并且能够像神经网络一样进行在线学习。我们为使用OADT的监督学习推导了一种新的客观度量。实验结果验证了所提出分类方案的有效性。此外,对于某些实际生活数据集,我们发现OADT的性能优于两种广泛使用的模型:专家分层混合模型和多层感知器。