Kudryashov Dmitry S, Stepanova Olga V, Vilitkevich Elena L, Nikonenko Tatyana A, Nadezhdina Elena S, Shanina Nina A, Lukas Thomas J, Van Eldik Linda J, Watterson D Martin, Shirinsky Vladimir P
Russian Cardiology Research Center, Moscow 121552, Russia.
Exp Cell Res. 2004 Aug 15;298(2):407-17. doi: 10.1016/j.yexcr.2004.04.025.
Recently discovered 210-kDa myosin light chain kinase (MLCK-210) is identical to 108-130 kDa MLCK, the principal regulator of the myosin II molecular motor, except for the presence of a unique amino terminal extension. Our in vitro experiments and transfected cell studies demonstrate that the N-terminal half of MLCK-210 unique tail domain has novel microfilament and microtubule binding activity. Consistent with this activity, the MLCK-210 domain codistributes with microfilaments and microtubules in cultured cells and with soluble tubulin in nocodazole-treated cells. This domain is capable of aggregating tubulin dimers in vitro, causing bundling and branching of microtubules induced by taxol. The N-terminal actin-binding region of MLCK-210 has lower affinity to actin (K(d) = 7.4 microM) than its central D(F/V)RXXL repeat-based actin-binding site and does not protect stress fibers from disassembly triggered by MLCK inhibition in transfected cells. Obtained results suggest that while being resident on microfilaments, MLCK-210 may interact with other cytoskeletal components through its N-terminal domain. Based on available evidence, we propose a model in which MLCK-210 could organize cell motility by simultaneous control of cytoskeleton architecture and actomyosin activation through the novel protein scaffold function of the unique tail domain and the classical MLCK catalytic function of the kinase domain.
最近发现的210-kDa肌球蛋白轻链激酶(MLCK-210)与108-130 kDa肌球蛋白轻链激酶相同,后者是肌球蛋白II分子马达的主要调节因子,只是其存在一个独特的氨基末端延伸。我们的体外实验和转染细胞研究表明,MLCK-210独特尾部结构域的N端一半具有新的微丝和微管结合活性。与这种活性一致,MLCK-210结构域在培养细胞中与微丝和微管共分布,在诺考达唑处理的细胞中与可溶性微管蛋白共分布。该结构域能够在体外聚集微管蛋白二聚体,导致紫杉醇诱导的微管成束和分支。MLCK-210的N端肌动蛋白结合区域对肌动蛋白的亲和力(K(d)=7.4 microM)低于其基于中央D(F/V)RXXL重复序列的肌动蛋白结合位点,并且在转染细胞中不能保护应力纤维免受MLCK抑制引发的解聚。获得的结果表明,虽然MLCK-210驻留在微丝上,但它可能通过其N端结构域与其他细胞骨架成分相互作用。基于现有证据,我们提出了一个模型,其中MLCK-210可以通过独特尾部结构域的新型蛋白质支架功能和激酶结构域的经典MLCK催化功能,同时控制细胞骨架结构和肌动球蛋白激活,从而组织细胞运动。