Suppr超能文献

压力源和社会支持认知可预测疾病态度和就医意图:对患病角色的重新审视。

Stressors and social support perceptions predict illness attitudes and care-seeking intentions: re-examining the sick role.

作者信息

Miczo Nathan

机构信息

Department of Communication, Western Illinois University, Macomb, IL 61455, USA.

出版信息

Health Commun. 2004;16(3):347-61. doi: 10.1207/S15327027HC1603_5.

Abstract

Parsons' (1951) sick role concept has had a profound impact on the study of sickness as a social phenomenon. The sick role might be better conceived as a set of illness attitudes and care-seeking intentions rather than a set of social norms. This investigation purports (a) to explore the relationships among illness attitudes, (b) to examine the ability of illness attitudes to predict medical care-seeking intentions, and (c) to investigate differences in the sick role as a function of stressors and social support perceptions. Participants (N = 148) completed a survey questionnaire assessing daily hassles, life events, perceived social support, dependence, self-criticism, and the sick role. Results of a factor analysis on the sick role measures revealed four attitudinal (Release, Consideration, Burden, and Deviance) and two behavioral (Denial and Consult) factors. The attitudinal factors were moderately intercorrelated, with some ability to predict care-seeking intentions. Regression analyses revealed that stressors and support perceptions did exhibit some ability to predict the sick role. Results are discussed in terms of their implications for health communication research.

摘要

帕森斯(1951年)的患病角色概念对将疾病作为一种社会现象的研究产生了深远影响。患病角色或许更应被视为一套疾病态度和寻求医疗护理的意图,而非一套社会规范。本调查旨在:(a)探究疾病态度之间的关系;(b)检验疾病态度预测寻求医疗护理意图的能力;(c)研究作为压力源和社会支持认知函数的患病角色差异。参与者(N = 148)完成了一份调查问卷,评估日常烦恼、生活事件、感知到的社会支持、依赖、自我批评以及患病角色。对患病角色测量指标进行因子分析的结果显示出四个态度因子(解脱、体贴、负担和偏差)和两个行为因子(否认和咨询)。态度因子之间存在中等程度的相互关联,具备一定预测寻求护理意图的能力。回归分析表明,压力源和支持认知确实展现出一定预测患病角色的能力。将根据研究结果对健康传播研究的意义展开讨论。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验