Zigler Kirk S, Lessios H A
Smithsonian Tropical Research Institute, Box 2072, Balboa, Panama.
Evolution. 2004 Jun;58(6):1225-41. doi: 10.1111/j.0014-3820.2004.tb01702.x.
Beginning with E. Mayr's study in 1954, tropical sea urchins have played an important role in studies of speciation in the sea, but what are the processes of cladogenesis and divergence that give rise to new species in this group? We attempt to answer this question in the genus Lytechinus. Unlike the majority of other tropical sea urchin genera, which have circumtropical distributions, Lytechinus is mostly confined to the tropics and subtropics of the New World. We sequenced a region of mitochondrial cytochrome oxidase I and the entire molecule of nuclear bindin (a sperm gamete recognition protein) of nearly all species in the genus, and we assayed isozymes of three partially sympatric closely related species and subspecies. We found that in both mitochondrial DNA (mtDNA) and in bindin the genus Lytechinus is paraphyletic, encompassing Sphaerechinus granularis as the sister species of L. euerces. The rest of the species are arranged in an Atlantic clade composed of L. williamsi and L. variegatus, and a Pacific clade containing L. anamesus, L. pictus, L. semituberculatus, and L. panamensis. Divergence between these clades suggests that they were separated no later than the closure of the Isthmus of Panama, and possibly before this time. Our data confirm that L. anamesus and L. pictus from California are a single species, and provide no evidence of differentiation between L. variegatus variegatus from the Caribbean and L. variegatus atlanticus from Bermuda. Lytechinus variegatus variegatus mtDNA is distinct from that of L. variegatus carolinus from the North American seaboard and the Gulf of Mexico, whereas their bindins are very similar. However, there is clear evidence of introgression of mtDNA between the two subspecies and they share alleles in all sampled isozyme loci. Lytechinus williamsi from the Caribbean shares mtDNA haplotypes with L. variegatus variegatus, and they also share isozymes in all assayed loci. Their bindin, however, is distinct and coalesces within each morphospecies. A private clade of mtDNA in L. williamsi may be indicative of former differentiation in the process of being swamped by introgression, or of recent speciation. Recent sudden expansions in effective population size may explain the predominance of a few mitochondrial haplotypes common to the two species. Despite the high divergence of bindin (relative to differentiation of mtDNA) between L. variegatus and L. williamsi, comparison of amino acid replacement to silent substitutions by various methods uncovered no evidence for positive selection on the bindin of any clade of Lytechinus. With the possible exception of L. williamsi and L. variegatus, our results are consistent with a history of allopatric speciation in Lytechinus. The molecular results from Lytechinus, along with those of other similar studies of sea urchins, suggest that the general speciation patterns deduced in the middle of last century by Mayr from morphology and geography have held up, but also have uncovered peculiarities in the evolution of each genus.
自1954年E. 迈尔的研究开始,热带海胆在海洋物种形成研究中发挥了重要作用,但在这个类群中,导致新物种产生的分支进化和分化过程是怎样的呢?我们试图在光棘球海胆属中回答这个问题。与大多数具有环热带分布的其他热带海胆属不同,光棘球海胆属主要局限于新世界的热带和亚热带地区。我们对该属几乎所有物种的线粒体细胞色素氧化酶I的一个区域以及核结合蛋白(一种精子配子识别蛋白)的整个分子进行了测序,并对三个部分同域分布的近缘物种和亚种的同工酶进行了分析。我们发现,在光棘球海胆属中,线粒体DNA(mtDNA)和结合蛋白均呈现并系发生,其中颗粒球海胆作为尤氏光棘球海胆的姐妹物种被纳入该属。其余物种则排列成一个大西洋分支,由威廉姆斯光棘球海胆和杂色光棘球海胆组成,以及一个太平洋分支,包含无名光棘球海胆、多色光棘球海胆、半瘤光棘球海胆和巴拿马光棘球海胆。这些分支之间的分化表明它们最晚在巴拿马地峡闭合时就已分离,甚至可能在此之前就已分离。我们的数据证实,来自加利福尼亚的无名光棘球海胆和多色光棘球海胆是单一物种,并且没有提供证据表明来自加勒比地区的杂色光棘球海胆指名亚种和来自百慕大的杂色光棘球海胆大西洋亚种之间存在分化。杂色光棘球海胆指名亚种的mtDNA与来自北美沿海和墨西哥湾的卡罗琳杂色光棘球海胆不同,而它们的结合蛋白非常相似。然而,有明确证据表明这两个亚种之间存在mtDNA渐渗,并且它们在所有采样的同工酶位点共享等位基因。来自加勒比地区的威廉姆斯光棘球海胆与杂色光棘球海胆指名亚种共享mtDNA单倍型,并且它们在所有分析位点也共享同工酶。然而,它们的结合蛋白是不同的,并且在每个形态物种内聚合。威廉姆斯光棘球海胆中一个私有的mtDNA分支可能表明其在渐渗淹没过程中曾经发生过分化,或者是近期物种形成的结果。有效种群大小最近的突然扩张可能解释了这两个物种中少数常见线粒体单倍型占主导的现象。尽管杂色光棘球海胆和威廉姆斯光棘球海胆之间的结合蛋白差异很大(相对于mtDNA的分化),但通过各种方法对氨基酸替换与沉默替换进行比较,未发现光棘球海胆任何分支的结合蛋白存在正选择的证据。除了威廉姆斯光棘球海胆和杂色光棘球海胆可能的例外情况,我们的结果与光棘球海胆异地物种形成的历史一致。光棘球海胆的分子研究结果,以及其他类似的海胆研究结果表明,迈尔在上个世纪中叶根据形态学和地理学推断出的一般物种形成模式仍然成立,但同时也揭示了每个属进化过程中的独特之处。