Touzik A, Hermann H, Wetzig K
Institute for Solid State and Materials Research Dresden, P.O. Box 270116, D-01171 Dresden, Germany.
J Chem Phys. 2004 Apr 15;120(15):7131-5. doi: 10.1063/1.1669379.
Kinetic Monte Carlo methods have been used to simulate structural transformations in fullerene layers during electrochemical intercalation with alkali-metal ions (A). Special attention is paid to the thermodynamic stability of the A(x)C(60) phases. The calculations point out a phase separation in the doped fullerene layer into alkali-metal-rich and alkali-metal-depleted areas at room temperature. The final state is represented by two phases which coexist as a stable fine mixture of nanoscale particles. The instability of homogeneous layers has potentially critical impact on their electrical properties and can explain the formation of nanostructures (20-50 nm) at the fullerene-electrolyte interface. Rb(3)C(60) clusters are predicted to be larger than K(3)C(60) ones for equal mean alkali-metal concentrations. Experimental data on electrochemical metal deposition on alkali-metal-doped fullerene substrates-in particular, atomic force microscopy measurements-are also consistent with the model proposed.
动力学蒙特卡罗方法已被用于模拟碱金属离子(A)电化学嵌入富勒烯层过程中的结构转变。特别关注了A(x)C(60)相的热力学稳定性。计算结果表明,在室温下,掺杂的富勒烯层中会发生相分离,形成富碱金属区和贫碱金属区。最终状态由两个相表示,它们作为纳米级颗粒的稳定精细混合物共存。均匀层的不稳定性对其电学性质可能产生关键影响,并且可以解释富勒烯 - 电解质界面处纳米结构(20 - 50纳米)的形成。对于相同的平均碱金属浓度,预测Rb(3)C(60)团簇比K(3)C(60)团簇更大。关于碱金属掺杂富勒烯基底上电化学金属沉积的实验数据——特别是原子力显微镜测量结果——也与所提出的模型一致。