Zurek Eva, Autschbach Jochen, Malinowski Nikola, Enders Axel, Kern Klaus
Max-Planck-Institut für Festkorperforschung, Heisenbergstrasse 1, 70569, Stuttgart, Germany.
ACS Nano. 2008 May;2(5):1000-14. doi: 10.1021/nn800022d.
A novel experimental set-up was used to study superstable (magic) Ba-C(60) and K-C(60) compound clusters. The most stable systems observed cannot be rationalized by simple electronic or by geometrical shell filling arguments. Annealing the clusters past the temperature necessary for the fragmentation of the initial metastable clusters formed at the source reveals information about their thermodynamic stability. Higher temperatures yield larger species, suggesting that similar experiments may be used to rationally produce nanoscale clusters with highly desirable properties. Density functional calculations reveal ionic (K, Ba) and covalent (Ba) bonding between C(60) and the metal atoms. The entropic contribution to the Gibbs free energy is shown to be essential in determining absolute and relative cluster stabilities. In particular, we demonstrate that at higher temperatures the entropy favors the formation of larger clusters. A simple criterion which may be used to determine the absolute and relative stabilities of general multicomponent clusters is proposed.
一种新型实验装置被用于研究超稳定(神奇)的Ba-C(60)和K-C(60)复合团簇。所观察到的最稳定体系无法通过简单的电子或几何壳层填充论据来合理解释。对团簇进行退火处理,使其温度超过源处形成的初始亚稳团簇发生碎片化所需的温度,这揭示了它们的热力学稳定性信息。更高的温度会产生更大的物种,这表明类似的实验可用于合理地制备具有高度理想性质的纳米级团簇。密度泛函计算揭示了C(60)与金属原子之间的离子键(K、Ba)和共价键(Ba)。结果表明,熵对吉布斯自由能的贡献在确定团簇的绝对稳定性和相对稳定性方面至关重要。特别是,我们证明在较高温度下,熵有利于形成更大的团簇。提出了一个可用于确定一般多组分团簇绝对稳定性和相对稳定性的简单判据。