Jiang Yu, Dong Shi-Hai, Lozada-Cassou M
Departamento de Física, Universidad Autonoma Metropolitana-Iztapalapa, Apartado Postal 55-534, 09340 México D.F., México.
J Chem Phys. 2004 May 8;120(18):8389-94. doi: 10.1063/1.1691737.
Dynamical response of a passivation model subjected to parametric periodic and stochastic perturbations is studied numerically. In response to weak periodic modulation, the system exhibits a rich variety of resonance behavior and induced dynamics, including periodically induced oscillation, birhythmicity, switching between two bistable states, selection of one of the bistable states, mixed-mode and chaotic oscillations. These phenomena are discussed in terms of the stability of saddle focus and an incomplete homoclinic connection. Our numerical results are relevant for a wide class of electro-chemical oscillatory systems, where the re-injection of unstable trajectory on the neighborhood of a saddle focus is a typical feature in the phase space.
对一个受参数周期和随机扰动的钝化模型的动力学响应进行了数值研究。对于弱周期调制,系统表现出丰富多样的共振行为和诱导动力学,包括周期性诱导振荡、双节律性、两个双稳态之间的切换、双稳态之一的选择、混合模式和混沌振荡。根据鞍点焦点的稳定性和不完全同宿连接对这些现象进行了讨论。我们的数值结果适用于广泛的一类电化学振荡系统,其中在鞍点焦点邻域对不稳定轨迹的重新注入是相空间中的一个典型特征。