Koch B.-P., Bruhn B.
Fachbereich Physik, Ernst-Moritz-Arndt-Universitat Domstrasse 10a, D-17489 Greifswald, Germany.
Chaos. 1993 Oct;3(4):443-457. doi: 10.1063/1.165951.
We investigate the bifurcation phenomena and the change in phase space structure connected with the transition from regular to chaotic scattering in classical systems with unbounded dynamics. The regular systems discussed in this paper are integrable ones in the sense of Liouville, possessing a degenerated unstable periodic orbit at infinity. By means of a McGehee transformation the degeneracy can be removed and the usual Melnikov method is applied to predict homoclinic crossings of stable and unstable manifolds for the perturbed system. The chosen examples are the perturbed radial Kepler problem and two kinetically coupled Morse oscillators with different potential parameters which model the stretching dynamics in ABC molecules. The calculated subharmonic and homoclinic Melnikov functions can be used to prove the existence of chaotic scattering and of elliptic and hyperbolic periodic orbits, to calculate the width of the main stochastic layer and of the resonances, and to predict the range of initial conditions where singularities in the scattering function are found. In the second example the value of the perturbation parameter at which channel transitions set in is calculated. The theoretical results are supplemented by numerical experiments.
我们研究了具有无界动力学的经典系统中与从规则散射到混沌散射转变相关的分岔现象和相空间结构的变化。本文讨论的规则系统在刘维尔意义下是可积的,在无穷远处具有一个退化的不稳定周期轨道。通过麦吉hee变换可以消除退化,并应用通常的梅尔尼科夫方法来预测受扰系统的稳定和不稳定流形的同宿交叉。所选择的例子是受扰的径向开普勒问题和两个具有不同势参数的动力学耦合莫尔斯振子,它们模拟了ABC分子中的拉伸动力学。计算得到的次谐波和同宿梅尔尼科夫函数可用于证明混沌散射以及椭圆和双曲周期轨道的存在,计算主要随机层和共振的宽度,并预测发现散射函数奇点的初始条件范围。在第二个例子中,计算了通道转变开始时的扰动参数值。理论结果通过数值实验得到补充。