Fiedler Beate, Wollert Kai C
Department of Cardiology and Angiology, Hannover Medical School, Carl-Neuberg Str. 1, 30625, Hannover, Germany.
Cardiovasc Res. 2004 Aug 15;63(3):450-7. doi: 10.1016/j.cardiores.2004.04.002.
Cardiac hypertrophy occurs in a number of disease states associated with chronic increases in cardiac work load. Although cardiac hypertrophy may initially represent an adaptive response of the myocardium, ultimately, it often progresses to ventricular dilatation and heart failure. Much investigation has focused on the signaling pathways controlling cardiac hypertrophy at the level of the single cardiac myocyte. One prohypertrophic pathway that has received much attention involves the ubiquitously expressed Ca2+/calmodulin-activated phosphatase calcineurin. Upon activation by Ca2+, calcineurin dephosphorylates nuclear factor of activated T cell (NFAT) transcription factors, leading to their nuclear translocation. As common in complex biological systems, cardiac hypertrophy is controlled simultaneously by stimulatory (prohypertrophic) and counter-regulatory (antihypertrophic) pathways. Given the potent prohypertrophic effects of the Ca2+-calcineurin-NFAT pathway in cardiac myocytes, it is not surprising that the activity of this pathway is tightly controlled at multiple levels. Inhibitory mechanisms upstream (nitric oxide (NO), cGMP, cGMP-dependent protein kinase type I (PKG I), heme oxygenase-1 (HO-1), biliverdin, carbon monoxide (CO)) and downstream from calcineurin (glycogen synthase kinase-3 (GSK3), c-Jun N-terminal kinases (JNKs), p38 mitogen-activated protein kinase (MAPKs)) have been described. Moreover, several inhibitors directly target calcineurin enzymatic activity (cyclosporine A (CsA), tacrolimus (FK506), calcineurin-binding protein-1 (Cabin-1)/calcineurin-inhibitory protein (Cain), A-kinase-anchoring protein-79 (AKAP79), calcineurin B homology protein (CHP), MCIPs, VIVIT). Considering the dominant role of the calcineurin pathway in cardiac hypertrophy and failure, calcineurin-inhibitory strategies may lead to the identification of novel therapeutic approaches for patients with cardiac disease.
心脏肥大发生于多种与慢性心脏工作负荷增加相关的疾病状态。尽管心脏肥大最初可能代表心肌的一种适应性反应,但最终它常常进展为心室扩张和心力衰竭。许多研究聚焦于在单个心肌细胞水平控制心脏肥大的信号通路。一条备受关注的促肥大通路涉及广泛表达的Ca2+/钙调蛋白激活的磷酸酶钙调神经磷酸酶。在被Ca2+激活后,钙调神经磷酸酶使活化T细胞核因子(NFAT)转录因子去磷酸化,导致它们向细胞核易位。正如在复杂生物系统中常见的那样,心脏肥大同时受刺激(促肥大)和反调节(抗肥大)通路的控制。鉴于Ca2+-钙调神经磷酸酶-NFAT通路在心肌细胞中具有强大的促肥大作用,该通路的活性在多个水平受到严格控制也就不足为奇了。已描述了钙调神经磷酸酶上游(一氧化氮(NO)、环鸟苷酸(cGMP)、I型cGMP依赖性蛋白激酶(PKG I)、血红素加氧酶-1(HO-1)、胆绿素、一氧化碳(CO))和下游(糖原合酶激酶-3(GSK3)、c-Jun氨基末端激酶(JNKs)、p38丝裂原活化蛋白激酶(MAPKs))的抑制机制。此外,几种抑制剂直接靶向钙调神经磷酸酶的酶活性(环孢素A(CsA)、他克莫司(FK506)、钙调神经磷酸酶结合蛋白-1(Cabin-1)/钙调神经磷酸酶抑制蛋白(Cain)、A激酶锚定蛋白-79(AKAP79)、钙调神经磷酸酶B同源蛋白(CHP)、MCIPs、VIVIT)。考虑到钙调神经磷酸酶通路在心脏肥大和心力衰竭中的主导作用,钙调神经磷酸酶抑制策略可能会为心脏病患者带来新的治疗方法。