Martínez-Núñez Emilio, Vázquez Saulo A, Marques Jorge M C
Departmento de Química Fisica, Universidade de Santiago de Compostela, 15706 Santiago de Compostela, Spain.
J Chem Phys. 2004 Aug 8;121(6):2571-7. doi: 10.1063/1.1769364.
Quasiclassical trajectory calculations were carried out to study the dynamics of energy transfer and collision-induced dissociation (CID) of CH(3)SH(+) + Ar at collision energies ranging from 4.34 to 34.7 eV. The relative abundances calculated for the most relevant product ions are found to be in good agreement with experiment, except for the lowest energies investigated. In general, the dissociation to form CH(3)(+) + SH is the dominant channel, even though it is not among the energetically favored reaction pathways. The results corroborate that this selective dissociation observed upon collisional activation arises from a more efficient translational to vibrational energy transfer for the low-frequency C-S stretching mode than for the high-frequency C-H stretching modes, together with weak couplings between the low- and high-frequency modes of vibration. The calculations suggest that CID takes place preferentially by a direct CH(3)(+) + SH detachment, and more efficiently when the Ar atom collides with the methyl group-side of CH(3)SH(+).
进行了准经典轨迹计算,以研究在4.34至34.7 eV碰撞能量范围内CH(3)SH(+) + Ar的能量转移动力学和碰撞诱导解离(CID)。除了所研究的最低能量外,计算得到的最相关产物离子的相对丰度与实验结果吻合良好。一般来说,尽管形成CH(3)(+) + SH的解离不是能量上有利的反应途径之一,但它却是主要通道。结果证实,碰撞活化时观察到的这种选择性解离源于低频C-S伸缩模式比高频C-H伸缩模式更有效地将平动能转化为振动能,以及低频和高频振动模式之间的弱耦合。计算表明,CID优先通过直接的CH(3)(+) + SH分离发生,并且当Ar原子与CH(3)SH(+)的甲基侧碰撞时更有效。