Suppr超能文献

代谢组学的量子化学计算。

Quantum Chemistry Calculations for Metabolomics.

机构信息

Walter Mors Institute of Research on Natural Products, Federal University of Rio de Janeiro, Rio de Janeiro 21941-901, Brazil.

Biological Science Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States.

出版信息

Chem Rev. 2021 May 26;121(10):5633-5670. doi: 10.1021/acs.chemrev.0c00901. Epub 2021 May 12.

Abstract

A primary goal of metabolomics studies is to fully characterize the small-molecule composition of complex biological and environmental samples. However, despite advances in analytical technologies over the past two decades, the majority of small molecules in complex samples are not readily identifiable due to the immense structural and chemical diversity present within the metabolome. Current gold-standard identification methods rely on reference libraries built using authentic chemical materials ("standards"), which are not available for most molecules. Computational quantum chemistry methods, which can be used to calculate chemical properties that are then measured by analytical platforms, offer an alternative route for building reference libraries, , libraries for "standards-free" identification. In this review, we cover the major roadblocks currently facing metabolomics and discuss applications where quantum chemistry calculations offer a solution. Several successful examples for nuclear magnetic resonance spectroscopy, ion mobility spectrometry, infrared spectroscopy, and mass spectrometry methods are reviewed. Finally, we consider current best practices, sources of error, and provide an outlook for quantum chemistry calculations in metabolomics studies. We expect this review will inspire researchers in the field of small-molecule identification to accelerate adoption of methods for generation of reference libraries and to add quantum chemistry calculations as another tool at their disposal to characterize complex samples.

摘要

代谢组学研究的一个主要目标是全面描述复杂生物和环境样本中的小分子组成。然而,尽管在过去二十年中分析技术取得了进展,但由于代谢组中存在巨大的结构和化学多样性,大多数复杂样本中的小分子仍然不易识别。目前的黄金标准鉴定方法依赖于使用纯化学物质构建的参考库(“标准”),但大多数分子都没有这些标准。计算量子化学方法可用于计算化学性质,然后通过分析平台进行测量,为建立参考库提供了另一种途径,包括用于“无标准”鉴定的库。在这篇综述中,我们介绍了代谢组学目前面临的主要障碍,并讨论了量子化学计算提供解决方案的应用。综述了几种成功的核磁共振波谱、离子淌度谱、红外光谱和质谱方法的例子。最后,我们考虑了当前的最佳实践、误差源,并对代谢组学研究中量子化学计算的前景进行了展望。我们希望这篇综述将激发小分子鉴定领域的研究人员加速采用生成参考库的方法,并将量子化学计算作为另一种工具来描述复杂样本。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ed2b/8161423/c6c6d395c6d6/cr0c00901_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验