Beres Stephen B, Sylva Gail L, Sturdevant Daniel E, Granville Chanel N, Liu Mengyao, Ricklefs Stacy M, Whitney Adeline R, Parkins Larye D, Hoe Nancy P, Adams Gerald J, Low Donald E, DeLeo Frank R, McGeer Allison, Musser James M
Laboratory of Human Bacterial Pathogenesis, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA.
Proc Natl Acad Sci U S A. 2004 Aug 10;101(32):11833-8. doi: 10.1073/pnas.0404163101. Epub 2004 Jul 28.
Molecular factors that contribute to the emergence of new virulent bacterial subclones and epidemics are poorly understood. We hypothesized that analysis of a population-based strain sample of serotype M3 group A Streptococcus (GAS) recovered from patients with invasive infection by using genome-wide investigative methods would provide new insight into this fundamental infectious disease problem. Serotype M3 GAS strains (n = 255) cultured from patients in Ontario, Canada, over 11 years and representing two distinct infection peaks were studied. Genetic diversity was indexed by pulsed-field gel electrophoresis, DNA-DNA microarray, whole-genome PCR scanning, prophage genotyping, targeted gene sequencing, and single-nucleotide polymorphism genotyping. All variation in gene content was attributable to acquisition or loss of prophages, a molecular process that generated unique combinations of proven or putative virulence genes. Distinct serotype M3 genotypes experienced rapid population expansion and caused infections that differed significantly in character and severity. Molecular genetic analysis, combined with immunologic studies, implicated a 4-aa duplication in the extreme N terminus of M protein as a factor contributing to an epidemic wave of serotype M3 invasive infections. This finding has implications for GAS vaccine research. Genome-wide analysis of population-based strain samples cultured from clinically well defined patients is crucial for understanding the molecular events underlying bacterial epidemics.
导致新型致病力强的细菌亚克隆和疫情出现的分子因素目前还知之甚少。我们推测,通过全基因组研究方法对从侵袭性感染患者中分离出的A群链球菌血清型M3(GAS)进行基于群体的菌株样本分析,将为这个基本的传染病问题提供新的见解。我们研究了从加拿大安大略省患者中培养的255株血清型M3 GAS菌株,这些菌株来自11年间的患者,代表了两个不同的感染高峰。通过脉冲场凝胶电泳、DNA-DNA微阵列、全基因组PCR扫描、噬菌体基因分型、靶向基因测序和单核苷酸多态性基因分型来评估遗传多样性。基因含量的所有变化都归因于噬菌体的获得或丢失,这是一个产生已证实或推定毒力基因独特组合的分子过程。不同的血清型M3基因型经历了快速的群体扩张,并导致了特征和严重程度显著不同的感染。分子遗传学分析与免疫学研究相结合,表明M蛋白极端N端的4个氨基酸重复是导致血清型M3侵袭性感染流行的一个因素。这一发现对GAS疫苗研究具有启示意义。对从临床明确界定的患者中培养的基于群体的菌株样本进行全基因组分析,对于理解细菌流行背后的分子事件至关重要。