Tsuda Ichiro, Fujii Hiroshi, Tadokoro Satoru, Yasuoka Takuo, Yamaguti Yutaka
Department of Mathematics, Graduate School of Science, Hokkaido University, Sapporo 060-0810, Japan.
J Integr Neurosci. 2004 Jun;3(2):159-82. doi: 10.1142/s021963520400049x.
We investigate the dynamic character of a network of electrotonically coupled cells consisting of class I point neurons, in terms of a finite dimensional dynamical system. We classify a subclass of class I point neurons, called class I* point neurons. Based on this classification, we use a reduced Hindmarsh-Rose (H-R) model, which consists of two dynamical variables, to construct a network model consisting of electrotonically coupled H-R neurons. Although biologically simple, the system is sufficient to extract the essence of the complex dynamics, which the system may yield under certain physiological conditions. The network model produces a transitory behavior as well as a periodic motion and spatio-temporal chaos. The transitory dynamics that the network model exhibits is shown numerically to be chaotic itinerancy. The transitions appear between various metachronal waves and all-synchronization states. The network model shows that this transitory dynamics can be viewed as a chaotic switch between synchronized and desynchronized states. Despite the use of spatially discrete point neurons as basic elements of the network, the overall dynamics exhibits scale-free activity including various scales of spatio-temporal patterns.
我们从有限维动力系统的角度研究了由I类点神经元组成的电突触耦合细胞网络的动力学特性。我们对I类点神经元的一个子类进行了分类,称为I*类点神经元。基于这种分类,我们使用由两个动力学变量组成的简化Hindmarsh-Rose(H-R)模型,构建了一个由电突触耦合的H-R神经元组成的网络模型。尽管在生物学上很简单,但该系统足以提取系统在某些生理条件下可能产生的复杂动力学的本质。该网络模型产生了一种暂态行为以及周期性运动和时空混沌。数值结果表明,网络模型所表现出的暂态动力学是混沌游走。转变出现在各种相继波和全同步状态之间。网络模型表明,这种暂态动力学可以被视为同步和去同步状态之间的混沌切换。尽管使用空间离散的点神经元作为网络的基本元素,但整体动力学表现出无标度活动,包括各种尺度的时空模式。