Venkadesh Siva, Shaikh Asmir, Shakeri Heman, Barreto Ernest, Van Horn John Darrell
Department of Psychology, University of Virginia, Charlottesville, VA, United States.
Department of Computer Science, University of Virginia, Charlottesville, VA, United States.
Front Netw Physiol. 2024 Mar 7;4:1302499. doi: 10.3389/fnetp.2024.1302499. eCollection 2024.
Transient synchronization of bursting activity in neuronal networks, which occurs in patterns of metastable itinerant phase relationships between neurons, is a notable feature of network dynamics observed . However, the mechanisms that contribute to this dynamical complexity in neuronal circuits are not well understood. Local circuits in cortical regions consist of populations of neurons with diverse intrinsic oscillatory features. In this study, we numerically show that the phenomenon of transient synchronization, also referred to as metastability, can emerge in an inhibitory neuronal population when the neurons' intrinsic fast-spiking dynamics are appropriately modulated by slower inputs from an excitatory neuronal population. Using a compact model of a mesoscopic-scale network consisting of excitatory pyramidal and inhibitory fast-spiking neurons, our work demonstrates a relationship between the frequency of pyramidal population oscillations and the features of emergent metastability in the inhibitory population. In addition, we introduce a method to characterize collective transitions in metastable networks. Finally, we discuss potential applications of this study in mechanistically understanding cortical network dynamics.
神经元网络中爆发活动的瞬态同步,以神经元之间亚稳态巡回相位关系的模式出现,是观察到的网络动力学的一个显著特征。然而,导致神经元回路这种动态复杂性的机制尚未得到很好的理解。皮质区域的局部回路由具有不同固有振荡特征的神经元群体组成。在这项研究中,我们通过数值模拟表明,当神经元的固有快速放电动力学受到来自兴奋性神经元群体的较慢输入的适当调制时,瞬态同步现象(也称为亚稳态)可以在抑制性神经元群体中出现。使用由兴奋性锥体神经元和抑制性快速放电神经元组成的介观尺度网络的紧凑模型,我们的工作展示了锥体神经元群体振荡频率与抑制性群体中出现的亚稳态特征之间的关系。此外,我们引入了一种方法来表征亚稳态网络中的集体转变。最后,我们讨论了这项研究在从机制上理解皮质网络动力学方面的潜在应用。