Sandhu Punam, Vogel John S, Rose Mark J, Ubick Esther A, Brunner Janice E, Wallace Michael A, Adelsberger Jennifer K, Baker Maribeth P, Henderson Paul T, Pearson Paul G, Baillie Thomas A
Department of Drug Metabolism, WP75A-203, Merck Research Laboratories, West Point, PA 19486, USA.
Drug Metab Dispos. 2004 Nov;32(11):1254-9. doi: 10.1124/dmd.104.000422. Epub 2004 Jul 30.
The technique of accelerator mass spectrometry (AMS) was validated successfully and used to study the pharmacokinetics and disposition in dogs of a preclinical drug candidate (7-deaza-2'-C-methyl-adenosine; Compound A), after oral and intravenous administration. The primary objective of this study was to examine whether Compound A displayed linear kinetics across subpharmacological (microdose) and pharmacological dose ranges in an animal model, before initiation of a human microdose study. The AMS-derived disposition properties of Compound A were comparable to data obtained via conventional techniques such as liquid chromatography-tandem mass spectrometry and liquid scintillation counting analyses. Compound A displayed multiphasic kinetics and exhibited low plasma clearance (5.8 ml/min/kg), a long terminal elimination half-life (17.5 h), and high oral bioavailability (103%). Currently, there are no published comparisons of the kinetics of a pharmaceutical compound at pharmacological versus subpharmacological doses using microdosing strategies. The present study thus provides the first description of the full pharmacokinetic profile of a drug candidate assessed under these two dosing regimens. The data demonstrated that the pharmacokinetic properties of Compound A following dosing at 0.02 mg/kg were similar to those at 1 mg/kg, indicating that in the case of Compound A, the pharmacokinetics in the dog appear to be linear across this 50-fold dose range. Moreover, the exceptional sensitivity of AMS provided a pharmacokinetic profile of Compound A, even after a microdose, which revealed aspects of the disposition of this agent that were inaccessible by conventional techniques.
成功验证了加速器质谱(AMS)技术,并将其用于研究一种临床前候选药物(7-脱氮-2'-C-甲基腺苷;化合物A)在犬类动物口服和静脉给药后的药代动力学及处置情况。本研究的主要目的是在开展人体微剂量研究之前,考察化合物A在动物模型中跨亚药理(微剂量)和药理剂量范围是否呈现线性动力学。通过AMS得出的化合物A的处置特性与通过传统技术(如液相色谱-串联质谱和液体闪烁计数分析)获得的数据相当。化合物A呈现多相动力学,血浆清除率低(5.8毫升/分钟/千克),终末消除半衰期长(17.5小时),口服生物利用度高(103%)。目前,尚无关于使用微剂量策略比较药物化合物在药理剂量与亚药理剂量下动力学的公开报道。因此,本研究首次描述了在这两种给药方案下评估的候选药物的完整药代动力学概况。数据表明,化合物A在0.02毫克/千克给药后的药代动力学特性与1毫克/千克给药后的相似,这表明就化合物A而言,犬类动物在这个50倍剂量范围内的药代动力学似乎呈线性。此外,即使在微剂量给药后,AMS的超高灵敏度也提供了化合物A的药代动力学概况,揭示了该药物处置过程中传统技术无法获取的一些方面。