Suppr超能文献

一项使用 14C 和 11C 标记维拉帕米的联合加速质谱正电子发射断层扫描人体微剂量研究。

A combined accelerator mass spectrometry-positron emission tomography human microdose study with 14C- and 11C-labelled verapamil.

机构信息

Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria.

出版信息

Clin Pharmacokinet. 2011 Feb;50(2):111-20. doi: 10.2165/11537250-000000000-00000.

Abstract

BACKGROUND AND OBJECTIVE

In microdose studies, the pharmacokinetic profile of a drug in blood after administration of a dose up to 100 μg is measured with sensitive analytical techniques, such as accelerator mass spectrometry (AMS). As most drugs exert their effect in tissue rather than blood, methodology is needed for extending pharmacokinetic analysis to different tissue compartments. In the present study, we combined, for the first time, AMS analysis with positron emission tomography (PET) in order to determine the pharmacokinetic profile of the model drug verapamil in plasma and brain of humans. In order to assess pharmacokinetic dose linearity of verapamil, data were acquired and compared after administration of an intravenous microdose and after an intravenous microdose administered concomitantly with an oral therapeutic dose.

METHODS

Six healthy male subjects received an intravenous microdose [0.05 mg] (period 1) and an intravenous microdose administered concomitantly with an oral therapeutic dose [80 mg] of verapamil (period 2) in a randomized, crossover, two-period study design. The intravenous dose was a mixture of (R/S)-[14C]verapamil and (R)-[11C]verapamil and the oral dose was unlabelled racaemic verapamil. Brain distribution of radioactivity was measured with PET whereas plasma pharmacokinetics of (R)- and (S)-verapamil were determined with AMS. PET data were analysed by pharmacokinetic modelling to estimate the rate constants for transfer (k) of radioactivity across the blood-brain barrier.

RESULTS

Most pharmacokinetic parameters of (R)- and (S)-verapamil as well as parameters describing exchange of radioactivity between plasma and brain (influx rate constant [K(1)] = 0.030 ± 0.003 and 0.031 ± 0.005 mL/mL/min and efflux rate constant [k(2)] = 0.099 ± 0.006 and 0.095 ± 0.008 min-1 for period 1 and 2, respectively) were not statistically different between the two periods although there was a trend for nonlinear pharmacokinetics for the (R)-enantiomer. On the other hand, all pharmacokinetic parameters (except for the terminal elimination half-life [t1/2;)]) differed significantly between the (R)- and (S)-enantiomers for both periods. The maximum plasma concentration (C(max)), area under the plasma concentration-time curve (AUC) from 0 to 24 hours (AUC(24)) and AUC from time zero to infinity (AUC(∞)) were higher and the total clearance (CL), volume of distribution (V(d)) and volume of distribution at steady state (V(ss)) were lower for the (R)- than for the (S)-enantiomer.

CONCLUSION

Combining AMS and PET microdosing allows long-term pharmacokinetic data along with information on drug tissue distribution to be acquired in the same subjects thus making it a promising approach to maximize data output from a single clinical study.

摘要

背景与目的

在微剂量研究中,使用加速质谱仪(AMS)等灵敏的分析技术测量药物给药后达 100μg 剂量以下时在血液中的药代动力学特征。由于大多数药物在组织中而不是在血液中发挥作用,因此需要有方法将药代动力学分析扩展到不同的组织隔室。在本研究中,我们首次将 AMS 分析与正电子发射断层扫描(PET)相结合,以确定模型药物维拉帕米在人体血浆和大脑中的药代动力学特征。为了评估维拉帕米的药代动力学剂量线性,在静脉微剂量给药后和静脉微剂量给药同时给予口服治疗剂量后采集和比较数据。

方法

6 名健康男性受试者在一项随机、交叉、两周期研究设计中分别接受静脉微剂量[0.05mg](第 1 期)和静脉微剂量给药同时给予口服治疗剂量[80mg]的维拉帕米(第 2 期)。静脉剂量是(R/S)-[14C]维拉帕米和(R)-[11C]维拉帕米的混合物,口服剂量是未标记的外消旋维拉帕米。放射性物质的脑分布通过 PET 测量,而(R)-和(S)-维拉帕米的血浆药代动力学通过 AMS 确定。通过药代动力学模型分析 PET 数据,以估计放射性物质通过血脑屏障的转移速率常数(k)。

结果

尽管(R)-对映体存在非线性药代动力学趋势,但(R)-和(S)-维拉帕米的大多数药代动力学参数以及描述血浆和大脑之间放射性物质交换的参数(第 1 期和第 2 期的摄取率常数[K1]=0.030±0.003 和 0.031±0.005mL/mL/min 以及外排率常数[k2]=0.099±0.006 和 0.095±0.008 min-1)在两个周期之间没有统计学差异。另一方面,对于两个周期,所有药代动力学参数(除末端消除半衰期[t1/2]外)均显著不同于(R)-和(S)-对映体。最大血浆浓度(Cmax)、24 小时内的血浆浓度-时间曲线下面积(AUC24)和从零时到无穷大的 AUC(AUC∞)在(R)-对映体中更高,总清除率(CL)、分布容积(Vd)和稳态分布容积(Vss)在(R)-对映体中更低。

结论

结合 AMS 和 PET 微剂量给药可同时获得长期药代动力学数据和药物组织分布信息,从而使其成为从单个临床研究中最大限度地获取数据的有前途的方法。

相似文献

4
In vivo measurement of [11C]verapamil kinetics in human tissues.
Eur J Clin Pharmacol. 2001 Jan-Feb;56(11):827-9. doi: 10.1007/s002280000253.

引用本文的文献

7
Predictive Value of Microdose Pharmacokinetics.微剂量药代动力学的预测价值。
Clin Pharmacokinet. 2019 Oct;58(10):1221-1236. doi: 10.1007/s40262-019-00769-x.
9
Use of Accelerator Mass Spectrometry in Human Health and Molecular Toxicology.加速器质谱在人类健康与分子毒理学中的应用。
Chem Res Toxicol. 2016 Dec 19;29(12):1976-1986. doi: 10.1021/acs.chemrestox.6b00234. Epub 2016 Oct 11.
10
Modeling of PET data in CNS drug discovery and development.中枢神经系统药物研发中的 PET 数据建模。
J Pharmacokinet Pharmacodyn. 2013 Jun;40(3):267-79. doi: 10.1007/s10928-013-9320-6. Epub 2013 May 10.

本文引用的文献

7
The utility of microdosing over the past 5 years.过去5年中微剂量给药的效用。
Expert Opin Drug Metab Toxicol. 2008 Dec;4(12):1499-506. doi: 10.1517/17425250802531767.
10
Peripheral metabolism of (R)-[11C]verapamil in epilepsy patients.癫痫患者中(R)-[11C]维拉帕米的外周代谢
Eur J Nucl Med Mol Imaging. 2008 Jan;35(1):116-23. doi: 10.1007/s00259-007-0556-5. Epub 2007 Sep 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验