Garsoux Geneviève, Lamotte Josette, Gerday Charles, Feller Georges
Laboratory of Biochemistry, Institute of Chemistry B6a, University of Liège, B-4000 Liège, Belgium.
Biochem J. 2004 Dec 1;384(Pt 2):247-53. doi: 10.1042/BJ20040325.
The cold-adapted cellulase CelG has been purified from the culture supernatant of the Antarctic bacterium Pseudoalteromonas haloplanktis and the gene coding for this enzyme has been cloned, sequenced and expressed in Escherichia coli. This cellulase is composed of three structurally and functionally distinct regions: an N-terminal catalytic domain belonging to glycosidase family 5 and a C-terminal cellulose-binding domain belonging to carbohydrate-binding module family 5. The linker of 107 residues connecting both domains is one of the longest found in cellulases, and optimizes substrate accessibility to the catalytic domain by drastically increasing the surface of cellulose available to a bound enzyme molecule. The psychrophilic enzyme is closely related to the cellulase Cel5 from Erwinia chrysanthemi. Both kcat and kcat/K(m) values at 4 degrees C for the psychrophilic cellulase are similar to the values for Cel5 at 30-35 degrees C, suggesting temperature adaptation of the kinetic parameters. The thermodynamic parameters of activation of CelG suggest a heat-labile, relatively disordered active site with low substrate affinity, in agreement with the experimental data. The structure of CelG has been constructed by homology modelling with a molecule of cellotetraose docked into the active site. No structural alteration related to cold-activity can be found in the catalytic cleft, whereas several structural factors in the overall structure can explain the weak thermal stability, suggesting that the loss of stability provides the required active-site mobility at low temperatures.
冷适应纤维素酶CelG已从南极细菌嗜盐栖假交替单胞菌的培养上清液中纯化出来,编码该酶的基因已被克隆、测序并在大肠杆菌中表达。这种纤维素酶由三个结构和功能不同的区域组成:一个属于糖苷酶家族5的N端催化结构域和一个属于碳水化合物结合模块家族5的C端纤维素结合结构域。连接两个结构域的107个残基的连接区是纤维素酶中发现的最长的连接区之一,它通过大幅增加结合酶分子可利用的纤维素表面积来优化底物对催化结构域的可及性。这种嗜冷酶与来自菊欧文氏菌的纤维素酶Cel5密切相关。嗜冷纤维素酶在4℃时的kcat和kcat/K(m)值与Cel5在30-35℃时的值相似,这表明动力学参数具有温度适应性。CelG的活化热力学参数表明其活性位点不耐热、相对无序且底物亲和力低,这与实验数据一致。通过同源建模构建了CelG的结构,并将纤维四糖分子对接至活性位点。在催化裂隙中未发现与冷活性相关的结构改变,而整体结构中的几个结构因素可以解释其较弱的热稳定性,这表明稳定性的丧失在低温下提供了所需的活性位点流动性。