Suppr超能文献

处理X射线图像以消除掩盖重要特征的无关结构。

Processing X-ray images to eliminate irrelevant structures that mask important features.

作者信息

Dong Zegang, Ledley Robert S

机构信息

Department of Physiology and Biophysics, Georgetown University Medical Center, Washington DC, 20007, USA.

出版信息

Comput Med Imaging Graph. 2004 Sep;28(6):321-31. doi: 10.1016/j.compmedimag.2004.06.001.

Abstract

In a plane radiographic image, there generally is an important area of interest (AOI). Too often, the AOI is partially masked by images of other overlapping and underlying structures that may be in front of or behind the AOI. An important adjunct to radiological diagnosis would be the capability of eliminating images of such masking structures to isolate the AOI for more detailed examination. We described a computerized method that utilizes a stereo pair of plane X-ray images to enable radiologists to interact with these images for first identifying for the computer the AOI and then directing the computer to eliminate all structures in front of and behind the AOI. The result is a plane X-ray image or a stereo X-ray image pair that includes only the AOI, but not any overlapping or underlying structures. The method uses a stereo pair of X-rays and the 3D perception of radiologists. 3D perception involves eye convergence and lens focus as well as cues, such as parallax and relative sizes. Convergence of the eyes is by far the strongest factor in 3D visualization. The horizontal separation or disparity between points in the left and right eye images on a screen or X-ray film produces convergence which determines an object's perceived depth in visual 3D space. All points in a given perceived depth plane have the same disparity on the screen. In theory, a given depth plane can be eliminated from the 3D image by shifting one image and then the other image of a stereo pair horizontally by the distance of the disparity of the depth plane, and subtracting. A new stereo image pair is thereby produced in which points only of the depth plane do not appear. However, in practical situations, certain artifacts arise that must be considered. The method has the potential for important applications in many areas of medical imaging processing.

摘要

在平面放射影像中,通常存在一个重要的感兴趣区域(AOI)。很多时候,该AOI会被其他重叠和下层结构的影像部分遮挡,这些结构可能位于AOI的前方或后方。放射诊断的一个重要辅助手段是能够消除此类遮挡结构的影像,以分离出AOI进行更详细的检查。我们描述了一种计算机化方法,该方法利用一对平面X射线影像,使放射科医生能够与这些影像交互,首先为计算机识别出AOI,然后指导计算机消除AOI前方和后方的所有结构。结果是得到一个仅包含AOI而不包含任何重叠或下层结构的平面X射线影像或立体X射线影像对。该方法使用一对立体X射线以及放射科医生的三维感知。三维感知涉及眼睛的会聚和晶状体聚焦以及诸如视差和相对大小等线索。眼睛的会聚是三维可视化中迄今为止最强的因素。屏幕或X射线胶片上左右眼图像中各点之间的水平间距或视差会产生会聚,这决定了物体在视觉三维空间中的感知深度。给定感知深度平面上的所有点在屏幕上具有相同的视差。理论上,通过将立体对中的一幅图像然后另一幅图像水平移动给定深度平面视差的距离并相减,可以从三维图像中消除给定的深度平面。从而产生一个新的立体图像对,其中仅该深度平面的点不会出现。然而,在实际情况中,会出现一些必须考虑的伪影。该方法在医学影像处理的许多领域具有重要的应用潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验