Suppr超能文献

裂殖酵母中的激光显微手术;有丝分裂纺锤体中区在后期B中的作用。

Laser microsurgery in fission yeast; role of the mitotic spindle midzone in anaphase B.

作者信息

Khodjakov Alexey, La Terra Sabrina, Chang Fred

机构信息

New York State Department of Health, Wadsworth Center, Albany 12201, USA.

出版信息

Curr Biol. 2004 Aug 10;14(15):1330-40. doi: 10.1016/j.cub.2004.07.028.

Abstract

INTRODUCTION

During anaphase B in mitosis, polymerization and sliding of overlapping spindle microtubules (MTs) contribute to the outward movement the spindle pole bodies (SPBs). To probe the mechanism of spindle elongation, we combine fluorescence microscopy, photobleaching, and laser microsurgery in the fission yeast Schizosaccharomyces pombe.

RESULTS

We demonstrate that a green laser cuts intracellular structures in yeast cells with high spatial specificity. By using laser microsurgery, we cut mitotic spindles labeled with GFP-tubulin at various stages of anaphase B. Although cutting generally caused early anaphase spindles to disassemble, midanaphase spindle fragments continued to elongate. In particular, when the spindle was cut near a SPB, the larger spindle fragment continued to elongate in the direction of the cut. Photobleach marks showed that sliding of overlapping midzone MTs was responsible for the elongation of the spindle fragment. Spindle midzone fragments not connected to either of the two spindle poles also elongated. Equatorial microtubule organizing center (eMTOC) activity was not affected in cells with one detached pole but was delayed or absent in cells with two detached poles.

CONCLUSIONS

These studies reveal that the spindle midzone is necessary and sufficient for the stabilization of MT ends and for spindle elongation. By contrast, SPBs are not required for elongation, but they contribute to the attachment of the nuclear envelope and chromosomes to the spindle, and to cell cycle progression. Laser microsurgery provides a means by which to dissect the mechanics of the spindle in yeast.

摘要

引言

在有丝分裂的后期B阶段,重叠的纺锤体微管(MTs)的聚合和滑动有助于纺锤极体(SPBs)向外移动。为了探究纺锤体伸长的机制,我们在裂殖酵母粟酒裂殖酵母中结合了荧光显微镜、光漂白和激光显微手术。

结果

我们证明绿色激光能以高空间特异性切割酵母细胞内的结构。通过使用激光显微手术,我们在后期B的各个阶段切割用绿色荧光蛋白微管蛋白标记的有丝分裂纺锤体。虽然切割通常会导致早期后期纺锤体解体,但中期纺锤体片段仍会继续伸长。特别是,当纺锤体在靠近纺锤极体处被切割时,较大的纺锤体片段会继续沿切割方向伸长。光漂白标记显示重叠的纺锤体中区微管的滑动是纺锤体片段伸长的原因。未连接到两个纺锤极任何一个的纺锤体中区片段也会伸长。赤道微管组织中心(eMTOC)的活性在有一个分离极的细胞中不受影响,但在有两个分离极的细胞中会延迟或缺失。

结论

这些研究表明,纺锤体中区对于微管末端的稳定和纺锤体伸长是必要且充分的。相比之下,纺锤体伸长不需要纺锤极体,但它们有助于核膜和染色体与纺锤体的附着以及细胞周期进程。激光显微手术提供了一种剖析酵母中纺锤体力学的方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验