Mallavarapu A, Sawin K, Mitchison T
Millennium Pharmaceuticals Inc., Cambridge, 02139, USA.
Curr Biol. 1999 Dec 2;9(23):1423-6. doi: 10.1016/s0960-9822(00)80090-1.
Microtubule dynamics have key roles in mitotic spindle assembly and chromosome movement [1]. Fast turnover of spindle microtubules at metaphase and polewards flux of microtubules (polewards movement of the microtubule lattice with depolymerization at the poles) at both metaphase and anaphase have been observed in mammalian cells [2]. Imaging spindle dynamics in genetically tractable yeasts is now possible using green fluorescent protein (GFP)-tagging of tubulin and sites on chromosomes [3] [4] [5] [6] [7] [8]. We used photobleaching of GFP-labeled tubulin to observe microtubule dynamics in the fission yeast Schizosaccharomyces pombe. Photobleaching did not perturb progress through mitosis. Bleached marks made on the spindle during metaphase recovered their fluorescence rapidly, indicating fast microtubule turnover. Recovery was spatially non-uniform, but we found no evidence for polewards flux. Marks made during anaphase B did not recover fluorescence, and were observed to slide away from each other at the same rate as spindle elongation. Fast microtubule turnover at metaphase and a switch to stable microtubules at anaphase suggest the existence of a cell-cycle-regulated molecular switch that controls microtubule dynamics and that may be conserved in evolution. Unlike the situation for vertebrate spindles, microtubule depolymerization at poles and polewards flux may not occur in S. pombe mitosis. We conclude that GFP-tubulin photobleaching in conjunction with mutant cells should aid research on molecular mechanisms causing and regulating dynamics.
微管动力学在有丝分裂纺锤体组装和染色体移动中起关键作用[1]。在哺乳动物细胞中已观察到中期纺锤体微管的快速周转以及中期和后期微管的向极流动(微管晶格向极移动,同时在极处发生解聚)[2]。现在,利用微管蛋白和染色体位点的绿色荧光蛋白(GFP)标记,在遗传上易于操作的酵母中对纺锤体动力学进行成像成为可能[3][4][5][6][7][8]。我们利用GFP标记的微管蛋白的光漂白来观察裂殖酵母粟酒裂殖酵母中的微管动力学。光漂白不会干扰有丝分裂的进程。在中期纺锤体上进行的漂白标记迅速恢复了荧光,表明微管周转迅速。恢复在空间上是不均匀的,但我们没有发现向极流动的证据。在后期B进行的标记没有恢复荧光,并且观察到它们以与纺锤体伸长相同的速率相互远离。中期微管的快速周转以及后期向稳定微管的转变表明存在一种细胞周期调节的分子开关,该开关控制微管动力学并且可能在进化中保守。与脊椎动物纺锤体的情况不同,在粟酒裂殖酵母有丝分裂中可能不会发生极处的微管解聚和向极流动。我们得出结论,GFP-微管蛋白光漂白与突变细胞相结合应有助于对引起和调节动力学的分子机制的研究。