Suppr超能文献

使用量子力学(QM)、支持向量机(SVM)和人工神经网络(ANN)技术预测细胞毒性T淋巴细胞(CTL)表位。

Prediction of CTL epitopes using QM, SVM and ANN techniques.

作者信息

Bhasin Manoj, Raghava G P S

机构信息

Institute of Microbial Technology, Sector 39A, Chandigarh, India.

出版信息

Vaccine. 2004 Aug 13;22(23-24):3195-204. doi: 10.1016/j.vaccine.2004.02.005.

Abstract

Cytotoxic T lymphocyte (CTL) epitopes are potential candidates for subunit vaccine design for various diseases. Most of the existing T cell epitope prediction methods are indirect methods that predict MHC class I binders instead of CTL epitopes. In this study, a systematic attempt has been made to develop a direct method for predicting CTL epitopes from an antigenic sequence. This method is based on quantitative matrix (QM) and machine learning techniques such as Support Vector Machine (SVM) and Artificial Neural Network (ANN). This method has been trained and tested on non-redundant dataset of T cell epitopes and non-epitopes that includes 1137 experimentally proven MHC class I restricted T cell epitopes. The accuracy of QM-, ANN- and SVM-based methods was 70.0, 72.2 and 75.2%, respectively. The performance of these methods has been evaluated through Leave One Out Cross-Validation (LOOCV) at a cutoff score where sensitivity and specificity was nearly equal. Finally, both machine-learning methods were used for consensus and combined prediction of CTL epitopes. The performances of these methods were evaluated on blind dataset where machine learning-based methods perform better than QM-based method. We also demonstrated through subgroup analysis that our methods can discriminate between T-cell epitopes and MHC binders (non-epitopes). In brief this method allows prediction of CTL epitopes using QM, SVM, ANN approaches. The method also facilitates prediction of MHC restriction in predicted T cell epitopes.

摘要

细胞毒性T淋巴细胞(CTL)表位是多种疾病亚单位疫苗设计的潜在候选对象。现有的大多数T细胞表位预测方法都是间接方法,预测的是MHC I类结合物而非CTL表位。在本研究中,已系统尝试开发一种从抗原序列预测CTL表位的直接方法。该方法基于定量矩阵(QM)以及支持向量机(SVM)和人工神经网络(ANN)等机器学习技术。此方法已在包含1137个经实验验证的MHC I类限制性T细胞表位的T细胞表位和非表位的非冗余数据集上进行了训练和测试。基于QM、ANN和SVM的方法的准确率分别为70.0%、72.2%和75.2%。这些方法的性能已通过留一法交叉验证(LOOCV)在灵敏度和特异性几乎相等的截止分数下进行了评估。最后,两种机器学习方法都用于CTL表位的一致性和联合预测。这些方法的性能在盲数据集上进行了评估,结果显示基于机器学习的方法比基于QM的方法表现更好。我们还通过亚组分析证明,我们的方法能够区分T细胞表位和MHC结合物(非表位)。简而言之,该方法允许使用QM、SVM、ANN方法预测CTL表位。该方法还便于预测预测的T细胞表位中的MHC限制性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验