Bhasin Manoj, Raghava G P S
Institute of Microbial Technology, Sector 39A, Chandigarh, India.
Bioinformatics. 2004 Feb 12;20(3):421-3. doi: 10.1093/bioinformatics/btg424. Epub 2004 Jan 22.
Prediction of peptides binding with MHC class II allele HLA-DRB1()0401 can effectively reduce the number of experiments required for identifying helper T cell epitopes. This paper describes support vector machine (SVM) based method developed for identifying HLA-DRB1()0401 binding peptides in an antigenic sequence. SVM was trained and tested on large and clean data set consisting of 567 binders and equal number of non-binders. The accuracy of the method was 86% when evaluated through 5-fold cross-validation technique.
预测与II类主要组织相容性复合体(MHC)等位基因HLA - DRB1()0401结合的肽段能够有效减少鉴定辅助性T细胞表位所需的实验数量。本文描述了一种基于支持向量机(SVM)开发的方法,用于在抗原序列中鉴定HLA - DRB1()0401结合肽段。支持向量机在由567个结合肽段和相同数量的非结合肽段组成的大规模纯净数据集上进行训练和测试。通过5折交叉验证技术评估时,该方法的准确率为86%。