Suppr超能文献

在有和没有质子交换膜的情况下,使用空气阴极单室微生物燃料电池发电。

Electricity generation using an air-cathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane.

作者信息

Liu Hong, Logan Bruce E

机构信息

Department of Civil and Environmental Engineering and The Penn State Hydrogen Energy (H2E) Center, The Pennsylvania State University, University Park, Pennsylvania 16802, USA.

出版信息

Environ Sci Technol. 2004 Jul 15;38(14):4040-6. doi: 10.1021/es0499344.

Abstract

Microbial fuel cells (MFCs) are typically designed as a two-chamber system with the bacteria in the anode chamber separated from the cathode chamber by a polymeric proton exchange membrane (PEM). Most MFCs use aqueous cathodes where water is bubbled with air to provide dissolved oxygen to electrode. To increase energy output and reduce the cost of MFCs, we examined power generation in an air-cathode MFC containing carbon electrodes in the presence and absence of a polymeric proton exchange membrane (PEM). Bacteria present in domestic wastewater were used as the biocatalyst, and glucose and wastewater were tested as substrates. Power density was found to be much greater than typically reported for aqueous-cathode MFCs, reaching a maximum of 262 +/- 10 mW/m2 (6.6 +/- 0.3 mW/L; liquid volume) using glucose. Removing the PEM increased the maximum power density to 494 +/- 21 mW/m2 (12.5 +/- 0.5 mW/L). Coulombic efficiency was 40-55% with the PEM and 9-12% with the PEM removed, indicating substantial oxygen diffusion into the anode chamber in the absence of the PEM. Power output increased with glucose concentration according to saturation-type kinetics, with a half saturation constant of 79 mg/L with the PEM-MFC and 103 mg/L in the MFC without a PEM (1000 omega resistor). Similar results on the effect of the PEM on power density were found using wastewater, where 28 +/- 3 mW/m2 (0.7 +/- 0.1 mW/L) (28% Coulombic efficiency) was produced with the PEM, and 146 +/- 8 mW/m2 (3.7 +/- 0.2 mW/L) (20% Coulombic efficiency) was produced when the PEM was removed. The increase in power output when a PEM was removed was attributed to a higher cathode potential as shown by an increase in the open circuit potential. An analysis based on available anode surface area and maximum bacterial growth rates suggests that mediatorless MFCs may have an upper order-of-magnitude limit in power density of 10(3) mW/m2. A cost-effective approach to achieving power densities in this range will likely require systems that do not contain a polymeric PEM in the MFC and systems based on direct oxygen transfer to a carbon cathode.

摘要

微生物燃料电池(MFCs)通常设计为双室系统,阳极室中的细菌通过聚合物质子交换膜(PEM)与阴极室隔开。大多数MFCs使用水性阴极,向水中鼓入空气以向电极提供溶解氧。为了提高能量输出并降低MFCs的成本,我们研究了在有和没有聚合物质子交换膜(PEM)的情况下,含碳电极的空气阴极MFC中的发电情况。生活污水中存在的细菌用作生物催化剂,葡萄糖和污水用作底物进行测试。发现功率密度远高于通常报道的水性阴极MFCs,使用葡萄糖时最大功率密度达到262±10 mW/m2(6.6±0.3 mW/L;液体体积)。去除PEM后,最大功率密度提高到494±21 mW/m2(12.5±0.5 mW/L)。有PEM时库仑效率为40 - 55%,去除PEM后为9 - 12%,这表明在没有PEM的情况下,大量氧气扩散到阳极室。功率输出根据饱和型动力学随葡萄糖浓度增加,有PEM的MFC的半饱和常数为79 mg/L,无PEM的MFC中为103 mg/L(1000Ω电阻)。使用污水时,发现PEM对功率密度的影响有类似结果,有PEM时产生28±3 mW/m2(0.7±0.1 mW/L)(库仑效率28%),去除PEM时产生146±8 mW/m2(3.7±0.2 mW/L)(库仑效率20%)。去除PEM时功率输出的增加归因于阴极电位升高,如开路电位增加所示。基于可用阳极表面积和最大细菌生长速率的分析表明,无介体MFCs的功率密度可能有10³ mW/m2的上限数量级限制。实现该范围内功率密度的经济有效方法可能需要MFC中不含聚合物PEM的系统以及基于直接向碳阴极转移氧气的系统。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验