Suppr超能文献

一种用于生活污水处理和生物发电的新型分段阳极生物膜微生物燃料电池(FAB-MFC)集成系统。

A novel fragmented anode biofilm microbial fuel cell (FAB-MFC) integrated system for domestic wastewater treatment and bioelectricity generation.

作者信息

Atnafu Tesfalem, Leta Seyoum

机构信息

Center for Environmental Science, Addis Ababa University, Addis Ababa, Ethiopia.

Department of Biological Science, College of Natural Sciences, Mettu University, Mettu, Ethiopia.

出版信息

Bioresour Bioprocess. 2021 Nov 13;8(1):112. doi: 10.1186/s40643-021-00442-x.

Abstract

BACKGROUND

The critical MFC design challenge is to increase anode surface area. A novel FAB-MFC integrated system was developed and evaluated for domestic wastewater treatment. It was operated in fed-batch flow mode at 1-3 days of HRT with 755 mg/L COD and 0.76 kg-COD/m/day. The study includes anaerobic-MFC and aerobic-MFC integrated systems. Microbial electrode jacket dish (MEJ-dish) with hybrid dimension (HD) was invented, first time to authors' knowledge, to boost anode biofilm growth. The treatment system with MEJ+ (FAB) and MEJ- (MFC) anode are called FAB-MFC and MFC, respectively.

RESULTS

Fragmented variable anode biofilm thickness was observed in FAB than MFC. The FAB-MFC (FAB+) simple technique increases the anode biofilm thickness by ~ 5 times MFC. Due to HD the anode biofilm was fragmented in FAB+ system than MFC. At the end of each treatment cycle, voltage drops. All FAB+ integrated systems reduced voltage drop relative to MFC. FAB reduces voltage drops better than MFC in anaerobic-MFC from 6 to 20 mV and aerobic-MFC from 35-47 mV at 1 kΩ external load. The highest power density was achieved by FAB in anaerobic-MFC (FAB = 104 mW/m, MFC = 98 mW/m) and aerobic-MFC integrated system (FAB = 59 mW/m, MFC = 42 mW/m).

CONCLUSIONS

The ∆COD and CE between FAB and MFC could not be concluded because both setups were inserted in the same reactor. The integrated system COD removal (78-97%) was higher than the solitary MFC treatment (68-78%). This study findings support the FAB+ integrated system could be applied for real applications and improve performance. However, it might depend on influent COD, the microbial nature, and ∆COD in FAB+ and MFC, which requires further study.

摘要

背景

微生物燃料电池(MFC)设计的关键挑战在于增加阳极表面积。开发了一种新型的纤维增强生物阳极微生物燃料电池(FAB-MFC)集成系统,并对其处理生活污水的性能进行了评估。该系统采用分批进料流动模式运行,水力停留时间(HRT)为1 - 3天,进水化学需氧量(COD)为755 mg/L,COD去除负荷为0.76 kg-COD/m³/天。该研究包括厌氧-MFC和好氧-MFC集成系统。据作者所知,首次发明了具有混合尺寸(HD)的微生物电极套盘(MEJ-盘),以促进阳极生物膜的生长。带有MEJ+(FAB)阳极和MEJ-(MFC)阳极的处理系统分别称为FAB-MFC和MFC。

结果

与MFC相比,FAB中观察到阳极生物膜厚度呈碎片化变化。FAB-MFC(FAB+)这种简单技术使阳极生物膜厚度增加到MFC的约5倍。由于混合尺寸的原因,FAB+系统中的阳极生物膜比MFC中的更碎片化。在每个处理周期结束时,电压会下降。所有FAB+集成系统相对于MFC都降低了电压降。在1 kΩ外部负载下,FAB在厌氧-MFC中比MFC能更好地降低电压降,从6 mV降至20 mV,在好氧-MFC中从35 - 47 mV降至更低。FAB在厌氧-MFC集成系统(FAB = 104 mW/m²,MFC = 98 mW/m²)和好氧-MFC集成系统(FAB = 59 mW/m²,MFC = 42 mW/m²)中实现了最高功率密度。

结论

由于两种装置都安装在同一个反应器中,因此无法得出FAB和MFC之间的COD去除量差值(∆COD)和库仑效率(CE)。集成系统的COD去除率(78 - 97%)高于单独的MFC处理(68 - 78%)。本研究结果支持FAB+集成系统可应用于实际应用并提高性能。然而,这可能取决于进水COD、微生物性质以及FAB+和MFC中的∆COD,这需要进一步研究。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验