Clements John C, Nenonen Jukka, Li P K J, Horácek B Milan
Department of Mathematics and Statistics, Dalhousie University, Halifax, Canada.
Ann Biomed Eng. 2004 Jul;32(7):984-90. doi: 10.1023/b:abme.0000032461.80932.eb.
Bidomain theory for cardiac tissue assumes two interpenetrating anisotropic media--intracellular (i) and extracellular (e)--connected everywhere via a cell membrane; four local parameters sigma(i,e)(l,t) specify conductivities in the longitudinal (l) and transverse (t) directions with respect to cardiac muscle fibers. The full bidomain model for the propagation of electrical activation consists of coupled elliptic-parabolic partial differential equations for the transmembrane potential upsilon(m) and extracellular potential phi(e), together with quasistatic equations for the flow of current in the extracardiac regions. In this work we develop a preliminary assessment of the consequences of neglecting the effect of the passive extracardiac tissue and intracardiac blood masses on wave propagation in isolated whole heart models and describe a decoupling procedure, which requires no assumptions on the anisotropic conductivities and which yields a single reaction-diffusion equation for simulating the propagation of activation. This reduction to a decoupled model is justified in terms of the dimensionless parameter epsilon = (sigma(i)(l)sigma(e)(t) - sigma(i)(t)sigma(e)(l))/(sigma(i)(l) + sigma(e)(l))(sigma(i)(t) + sigma(e)(t)). Numerical simulations are generated which compare propagation in a sheet H of cardiac tissue using the full bidomain model, an isolated bidomain model, and the decoupled model. Preliminary results suggest that the decoupled model may be adequate for studying general properties of cardiac dynamics in isolated whole heart models.
心脏组织的双域理论假设存在两个相互贯穿的各向异性介质——细胞内(i)和细胞外(e)介质,它们通过细胞膜在任何位置相连;四个局部参数σ(i,e)(l,t)指定了相对于心肌纤维在纵向(l)和横向(t)方向上的电导率。用于电激活传播的完整双域模型由关于跨膜电位υ(m)和细胞外电位φ(e)的耦合椭圆 - 抛物型偏微分方程,以及关于心外区域电流流动的准静态方程组成。在这项工作中,我们对在孤立的全心脏模型中忽略被动心外组织和心内血团对波传播的影响所产生的后果进行了初步评估,并描述了一种解耦程序,该程序不需要对各向异性电导率做任何假设,并且能产生一个用于模拟激活传播的单一反应 - 扩散方程。根据无量纲参数ε = (σ(i)(l)σ(e)(t) - σ(i)(t)σ(e)(l))/((σ(i)(l) + σ(e)(l))(σ(i)(t) + σ(e)(t))),这种简化为解耦模型是合理的。我们进行了数值模拟,比较了使用完整双域模型、孤立双域模型和解耦模型在一片心脏组织H中的传播情况。初步结果表明,解耦模型可能足以用于研究孤立全心脏模型中心脏动力学的一般特性。