Suppr超能文献

膜对电击反应的不对称性:双域模拟的见解

Asymmetry in membrane responses to electric shocks: insights from bidomain simulations.

作者信息

Ashihara Takashi, Trayanova Natalia A

机构信息

Department of Biomedical Engineering, Tulane University, New Orleans, Louisiana 70118, USA.

出版信息

Biophys J. 2004 Oct;87(4):2271-82. doi: 10.1529/biophysj.104.043091.

Abstract

Models of myocardial membrane dynamics have not been able to reproduce the experimentally observed negative bias in the asymmetry of transmembrane potential changes (DeltaVm) induced by strong electric shocks delivered during the action potential plateau. The goal of this study is to determine what membrane model modifications can bridge this gap between simulation and experiment. We conducted simulations of shocks in bidomain fibers and sheets with membrane dynamics represented by the LRd'2000 model. We found that in the fiber, the negative bias in DeltaVm asymmetry could not be reproduced by addition of electroporation only, but by further addition of hypothetical outward current, Ia, activated upon strong shock-induced depolarization. Furthermore, the experimentally observed rectangularly shaped positive DeltaVm, negative-to-positive DeltaVm ratio (asymmetry ratio) = approximately 2, electroporation occurring at the anode only, and the increase in positive DeltaVm caused by L-type Ca2+-channel blockade were reproduced in the strand only if Ia was assumed to be a part of K+ flow through the L-type Ca2+-channel. In the sheet, Ia not only contributed to the negative bias in DeltaVm asymmetry at sites polarized by physical and virtual electrodes, but also restricted positive DeltaVm. Inclusion of Ia and electroporation is thus the bridge between experiment and simulation.

摘要

心肌膜动力学模型一直无法重现实验观察到的在动作电位平台期施加强电刺激所诱发的跨膜电位变化(ΔVm)不对称性中的负偏差。本研究的目的是确定哪些膜模型修改可以弥合模拟与实验之间的这一差距。我们对双域纤维和薄片中的电刺激进行了模拟,其膜动力学由LRd'2000模型表示。我们发现,在纤维中,仅通过添加电穿孔无法重现ΔVm不对称性中的负偏差,而是通过进一步添加假设的外向电流Ia来实现,Ia在强电击诱导的去极化时被激活。此外,只有当Ia被假定为通过L型Ca2+通道的K+流的一部分时,实验观察到的矩形正ΔVm、负向-正向ΔVm比值(不对称比值)约为2、仅在阳极发生电穿孔以及L型Ca2+通道阻断导致的正ΔVm增加才能在股线中重现。在薄片中,Ia不仅导致了在物理电极和虚拟电极极化部位的ΔVm不对称性中的负偏差,还限制了正ΔVm。因此,包含Ia和电穿孔是实验与模拟之间的桥梁。

相似文献

1
Asymmetry in membrane responses to electric shocks: insights from bidomain simulations.
Biophys J. 2004 Oct;87(4):2271-82. doi: 10.1529/biophysj.104.043091.
2
Cell and tissue responses to electric shocks.
Europace. 2005 Sep;7 Suppl 2:155-65. doi: 10.1016/j.eupc.2005.03.020.
3
Nonlinear changes of transmembrane potential during electrical shocks: role of membrane electroporation.
Circ Res. 2004 Feb 6;94(2):208-14. doi: 10.1161/01.RES.0000111526.69133.DE. Epub 2003 Dec 11.
4
Membrane time constant during internal defibrillation strength shocks in intact heart: effects of Na+ and Ca2+ channel blockers.
J Cardiovasc Electrophysiol. 2009 Jan;20(1):85-92. doi: 10.1111/j.1540-8167.2008.01273.x. Epub 2008 Sep 3.
5
Effects of electrical shocks on Cai2+ and Vm in myocyte cultures.
Circ Res. 2004 Jun 25;94(12):1589-97. doi: 10.1161/01.RES.0000132746.94360.8b. Epub 2004 May 20.
6
Optical mapping of transmural activation induced by electrical shocks in isolated left ventricular wall wedge preparations.
J Cardiovasc Electrophysiol. 2003 Nov;14(11):1215-22. doi: 10.1046/j.1540-8167.2003.03188.x.
7
Effects of electroporation on optically recorded transmembrane potential responses to high-intensity electrical shocks.
Am J Physiol Heart Circ Physiol. 2004 Jan;286(1):H412-8. doi: 10.1152/ajpheart.00689.2003. Epub 2003 Oct 2.
8
Review of mechanisms by which electrical stimulation alters the transmembrane potential.
J Cardiovasc Electrophysiol. 1999 Feb;10(2):234-43. doi: 10.1111/j.1540-8167.1999.tb00666.x.
9
Exploring anodal and cathodal make and break cardiac excitation mechanisms in a 3D anisotropic bidomain model.
Math Biosci. 2011 Apr;230(2):96-114. doi: 10.1016/j.mbs.2011.02.002. Epub 2011 Feb 15.
10
Activation dynamics in anisotropic cardiac tissue via decoupling.
Ann Biomed Eng. 2004 Jul;32(7):984-90. doi: 10.1023/b:abme.0000032461.80932.eb.

引用本文的文献

1
Computational modeling of cardiac electrophysiology and arrhythmogenesis: toward clinical translation.
Physiol Rev. 2024 Jul 1;104(3):1265-1333. doi: 10.1152/physrev.00017.2023. Epub 2023 Dec 28.
2
Validating defibrillation simulation in a human-shaped phantom.
Heart Rhythm. 2020 Apr;17(4):661-668. doi: 10.1016/j.hrthm.2019.11.020. Epub 2019 Nov 23.
4
Bidomain Predictions of Virtual Electrode-Induced Make and Break Excitations around Blood Vessels.
Front Bioeng Biotechnol. 2017 Mar 27;5:18. doi: 10.3389/fbioe.2017.00018. eCollection 2017.
5
Computational rabbit models to investigate the initiation, perpetuation, and termination of ventricular arrhythmia.
Prog Biophys Mol Biol. 2016 Jul;121(2):185-94. doi: 10.1016/j.pbiomolbio.2016.06.004. Epub 2016 Jun 19.
6
Efficient simulation of cardiac electrical propagation using high order finite elements.
J Comput Phys. 2012 May 20;231(10):3946-3962. doi: 10.1016/j.jcp.2012.01.037.
7
Mechanism of reentry induction by a 9-V battery in rabbit ventricles.
Am J Physiol Heart Circ Physiol. 2014 Apr 1;306(7):H1041-53. doi: 10.1152/ajpheart.00591.2013. Epub 2014 Jan 24.
9
Advances in modeling ventricular arrhythmias: from mechanisms to the clinic.
Wiley Interdiscip Rev Syst Biol Med. 2014 Mar-Apr;6(2):209-24. doi: 10.1002/wsbm.1256. Epub 2013 Dec 6.
10
Computational cardiology: the heart of the matter.
ISRN Cardiol. 2012;2012:269680. doi: 10.5402/2012/269680. Epub 2012 Nov 14.

本文引用的文献

1
Spiral wave control by a localized stimulus: a bidomain model study.
J Cardiovasc Electrophysiol. 2004 Feb;15(2):226-33. doi: 10.1046/j.1540-8167.2004.03381.x.
2
Mechanisms of myocardial capture and temporal excitable gap during spiral wave reentry in a bidomain model.
Circulation. 2004 Feb 24;109(7):920-5. doi: 10.1161/01.CIR.0000118331.13524.75. Epub 2004 Feb 16.
3
Virtual electrode theory explains pacing threshold increase caused by cardiac tissue damage.
Am J Physiol Heart Circ Physiol. 2004 Jun;286(6):H2183-94. doi: 10.1152/ajpheart.00637.2003. Epub 2004 Jan 15.
4
Optical mapping of transmural activation induced by electrical shocks in isolated left ventricular wall wedge preparations.
J Cardiovasc Electrophysiol. 2003 Nov;14(11):1215-22. doi: 10.1046/j.1540-8167.2003.03188.x.
5
Nonlinear changes of transmembrane potential during electrical shocks: role of membrane electroporation.
Circ Res. 2004 Feb 6;94(2):208-14. doi: 10.1161/01.RES.0000111526.69133.DE. Epub 2003 Dec 11.
6
Effects of electroporation on optically recorded transmembrane potential responses to high-intensity electrical shocks.
Am J Physiol Heart Circ Physiol. 2004 Jan;286(1):H412-8. doi: 10.1152/ajpheart.00689.2003. Epub 2003 Oct 2.
7
Graded and decremental response in heart muscle fibers.
Am J Physiol. 1958 Jul;194(1):187-96. doi: 10.1152/ajplegacy.1958.194.1.187.
8
Virtual electrode-induced positive and negative graded responses: new insights into fibrillation induction and defibrillation.
J Cardiovasc Electrophysiol. 2003 Jul;14(7):756-63. doi: 10.1046/j.1540-8167.2003.03042.x.
9
Approximate analytical solutions of the Bidomain equations for electrical stimulation of cardiac tissue with curving fibers.
Phys Rev E Stat Nonlin Soft Matter Phys. 2003 May;67(5 Pt 1):051925. doi: 10.1103/PhysRevE.67.051925. Epub 2003 May 27.
10
The role of cardiac tissue structure in defibrillation.
Chaos. 1998 Mar;8(1):221-233. doi: 10.1063/1.166299.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验