Ermilov Sergey, Anvari Bahman
Department of Bioengineering, Rice University, Houston, TX 77251-1892, USA.
Ann Biomed Eng. 2004 Jul;32(7):1016-26. doi: 10.1023/b:abme.0000032464.79116.07.
Optical tweezers present a technology for measurements of biological forces in the piconewton range. In such applications, one method of calibrating the transverse optical trapping force involves relating a known external force to the displacement of the trapped object from the trapping center. In this work we used Fourier analysis of the equation of motion to calculate the displacement of the trapped object from the trapping center under an external force induced by viscous drag. Triangular waveforms of different frequencies were used both in theoretical modeling and experiments to induce a force on a trapped object. We investigated the contribution of various factors including frequency of the external force, fluid viscosity, density, and dimensions of the trapped object, stiffness of the optical trap, and frequency response of the instruments used to control the motion of the viscous medium to the accuracy of the calibration. The developed model can be adopted for calibration of the transverse trapping force, analysis of the trapped object motion, and reconstruction of a force profile during measurements of dynamic biological forces.
光镊技术为测量皮牛范围内的生物力提供了一种手段。在这类应用中,校准横向光阱力的一种方法是将已知外力与被捕获物体相对于捕获中心的位移联系起来。在本研究中,我们利用运动方程的傅里叶分析来计算在粘性阻力引起的外力作用下,被捕获物体相对于捕获中心的位移。在理论建模和实验中均使用了不同频率的三角波形来对被捕获物体施加力。我们研究了包括外力频率、流体粘度、密度、被捕获物体的尺寸、光阱刚度以及用于控制粘性介质运动的仪器的频率响应等各种因素对校准精度的影响。所建立的模型可用于横向捕获力的校准、被捕获物体运动分析以及动态生物力测量过程中的力分布重构。