Suppr超能文献

用于活细胞内纳米操作的微磁镊

Micro magnetic tweezers for nanomanipulation inside live cells.

作者信息

de Vries Anthony H B, Krenn Bea E, van Driel Roel, Kanger Johannes S

机构信息

Biophysical Engineering, Faculty of Science and Technology, Institute for Biomedical Technology, University of Twente, 7500 AE Enschede, The Netherlands.

出版信息

Biophys J. 2005 Mar;88(3):2137-44. doi: 10.1529/biophysj.104.052035. Epub 2004 Nov 19.

Abstract

This study reports the design, realization, and characterization of a multi-pole magnetic tweezers that enables us to maneuver small magnetic probes inside living cells. So far, magnetic tweezers can be divided into two categories: I), tweezers that allow the exertion of high forces but consist of only one or two poles and therefore are capable of only exerting forces in one direction; and II), tweezers that consist of multiple poles and allow exertion of forces in multiple directions but at very low forces. The magnetic tweezers described here combines both aspects in a single apparatus: high forces in a controllable direction. To this end, micron scale magnetic structures are fabricated using cleanroom technologies. With these tweezers, magnetic flux gradients of nablaB = 8 x 10(3) T m(-1) can be achieved over the dimensions of a single cell. This allows exertion of forces up to 12 pN on paramagnetic probes with a diameter of 350 nm, enabling us to maneuver them through the cytoplasm of a living cell. It is expected that with the current tweezers, picoNewton forces can be exerted on beads as small as 100 nm.

摘要

本研究报告了一种多极磁镊的设计、实现及特性,该磁镊使我们能够在活细胞内操纵小型磁性探针。到目前为止,磁镊可分为两类:I)能施加高力但仅由一极或两极组成,因此只能在一个方向施加力的镊子;II)由多极组成且能在多个方向施加力但力非常小的镊子。这里描述的磁镊在单个仪器中结合了这两个方面:在可控方向上施加高力。为此,使用洁净室技术制造微米级磁性结构。使用这些磁镊,在单个细胞的尺寸范围内可实现▽B = 8×10³ T m⁻¹ 的磁通梯度。这使得能够对直径为350 nm的顺磁性探针施加高达12 pN的力,使我们能够在活细胞的细胞质中操纵它们。预计使用当前的磁镊,能够对小至100 nm的珠子施加皮牛顿力。

相似文献

1
Micro magnetic tweezers for nanomanipulation inside live cells.
Biophys J. 2005 Mar;88(3):2137-44. doi: 10.1529/biophysj.104.052035. Epub 2004 Nov 19.
3
Smart microrobots for mechanical cell characterization and cell convoying.
IEEE Trans Biomed Eng. 2007 Aug;54(8):1536-40. doi: 10.1109/TBME.2007.891171.
4
Near-field-magnetic-tweezer manipulation of single DNA molecules.
Phys Rev E Stat Nonlin Soft Matter Phys. 2004 Jul;70(1 Pt 1):011905. doi: 10.1103/PhysRevE.70.011905. Epub 2004 Jul 12.
5
High-force magnetic tweezers with force feedback for biological applications.
Rev Sci Instrum. 2007 Nov;78(11):114301. doi: 10.1063/1.2804771.
6
Dynamic measurements of transverse optical trapping force in biological applications.
Ann Biomed Eng. 2004 Jul;32(7):1016-26. doi: 10.1023/b:abme.0000032464.79116.07.
7
Tensile force-dependent neurite elicitation via anti-beta1 integrin antibody-coated magnetic beads.
Biophys J. 2003 Jul;85(1):623-36. doi: 10.1016/S0006-3495(03)74506-8.
8
Simple horizontal magnetic tweezers for micromanipulation of single DNA molecules and DNA-protein complexes.
Biotechniques. 2016 Jan 1;60(1):21-7. doi: 10.2144/000114369. eCollection 2016 Jan.
9
Creep indentation of single cells.
J Biomech Eng. 2003 Jun;125(3):334-41. doi: 10.1115/1.1572517.

引用本文的文献

1
Quadrupole Magnetic Tweezers for Precise Cell Transportation.
IEEE Trans Biomed Eng. 2025 Apr;72(4):1437-1444. doi: 10.1109/TBME.2024.3509313. Epub 2025 Mar 21.
2
Cellular Cargo Manipulation Using Magnetically Steerable Microrobots in Dense Environments.
Proc 2023 6th Int Conf Adv Robot (2023). 2023 Jul;2023. doi: 10.1145/3610419.3610439. Epub 2023 Nov 2.
5
In situ laser manipulation of root tissues in transparent soil.
Plant Soil. 2021;468(1-2):475-489. doi: 10.1007/s11104-021-05133-2. Epub 2021 Sep 12.
6
Nanomotor-based adsorbent for blood Lead(II) removal and in pig models.
Bioact Mater. 2020 Oct 23;6(4):1140-1149. doi: 10.1016/j.bioactmat.2020.09.032. eCollection 2021 Apr.
7
The Impact of Rate Formulations on Stochastic Molecular Motor Dynamics.
Sci Rep. 2019 Dec 5;9(1):18373. doi: 10.1038/s41598-019-54344-2.
9
A Review of Automated Microinjection of Zebrafish Embryos.
Micromachines (Basel). 2018 Dec 24;10(1):7. doi: 10.3390/mi10010007.
10
A new method to measure mechanics and dynamic assembly of branched actin networks.
Sci Rep. 2017 Nov 16;7(1):15688. doi: 10.1038/s41598-017-15638-5.

本文引用的文献

1
Three-dimensional magneto-optic trap for micro-object manipulation.
Opt Lett. 2001 Sep 1;26(17):1359-61. doi: 10.1364/ol.26.001359.
2
A three-dimensional viscoelastic model for cell deformation with experimental verification.
Biophys J. 2003 Nov;85(5):3336-49. doi: 10.1016/S0006-3495(03)74753-5.
3
Optical tweezers stretching of chromatin.
J Muscle Res Cell Motil. 2002;23(5-6):397-407. doi: 10.1023/a:1023450204528.
4
Diffusion and directed motion in cellular transport.
Phys Rev E Stat Nonlin Soft Matter Phys. 2002 Jul;66(1 Pt 1):011916. doi: 10.1103/PhysRevE.66.011916. Epub 2002 Jul 29.
6
Magnetic tweezers: micromanipulation and force measurement at the molecular level.
Biophys J. 2002 Jun;82(6):3314-29. doi: 10.1016/S0006-3495(02)75672-5.
7
Three-dimensional cellular deformation analysis with a two-photon magnetic manipulator workstation.
Biophys J. 2002 Apr;82(4):2211-23. doi: 10.1016/S0006-3495(02)75567-7.
8
Dictyostelium cells' cytoplasm as an active viscoplastic body.
Eur Biophys J. 2001 Aug;30(4):284-94. doi: 10.1007/s002490100135.
9
Imaging biochemistry inside cells.
Trends Cell Biol. 2001 May;11(5):203-11. doi: 10.1016/s0962-8924(01)01982-1.
10
Single-molecule study of transcriptional pausing and arrest by E. coli RNA polymerase.
Science. 2000 Mar 31;287(5462):2497-500. doi: 10.1126/science.287.5462.2497.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验