de Vries Anthony H B, Krenn Bea E, van Driel Roel, Kanger Johannes S
Biophysical Engineering, Faculty of Science and Technology, Institute for Biomedical Technology, University of Twente, 7500 AE Enschede, The Netherlands.
Biophys J. 2005 Mar;88(3):2137-44. doi: 10.1529/biophysj.104.052035. Epub 2004 Nov 19.
This study reports the design, realization, and characterization of a multi-pole magnetic tweezers that enables us to maneuver small magnetic probes inside living cells. So far, magnetic tweezers can be divided into two categories: I), tweezers that allow the exertion of high forces but consist of only one or two poles and therefore are capable of only exerting forces in one direction; and II), tweezers that consist of multiple poles and allow exertion of forces in multiple directions but at very low forces. The magnetic tweezers described here combines both aspects in a single apparatus: high forces in a controllable direction. To this end, micron scale magnetic structures are fabricated using cleanroom technologies. With these tweezers, magnetic flux gradients of nablaB = 8 x 10(3) T m(-1) can be achieved over the dimensions of a single cell. This allows exertion of forces up to 12 pN on paramagnetic probes with a diameter of 350 nm, enabling us to maneuver them through the cytoplasm of a living cell. It is expected that with the current tweezers, picoNewton forces can be exerted on beads as small as 100 nm.
本研究报告了一种多极磁镊的设计、实现及特性,该磁镊使我们能够在活细胞内操纵小型磁性探针。到目前为止,磁镊可分为两类:I)能施加高力但仅由一极或两极组成,因此只能在一个方向施加力的镊子;II)由多极组成且能在多个方向施加力但力非常小的镊子。这里描述的磁镊在单个仪器中结合了这两个方面:在可控方向上施加高力。为此,使用洁净室技术制造微米级磁性结构。使用这些磁镊,在单个细胞的尺寸范围内可实现▽B = 8×10³ T m⁻¹ 的磁通梯度。这使得能够对直径为350 nm的顺磁性探针施加高达12 pN的力,使我们能够在活细胞的细胞质中操纵它们。预计使用当前的磁镊,能够对小至100 nm的珠子施加皮牛顿力。