Suppr超能文献

Kv1.2细胞内区域对Kv2.1通道激活的影响。

Effects of Kv1.2 intracellular regions on activation of Kv2.1 channels.

作者信息

Scholle Annette, Zimmer Thomas, Koopmann Rolf, Engeland Birgit, Pongs Olaf, Benndorf Klaus

机构信息

Institut für Physiologie II, Friedrich-Schiller-Universität, 07740 Jena, Germany.

出版信息

Biophys J. 2004 Aug;87(2):873-82. doi: 10.1529/biophysj.104.040550.

Abstract

Depolarizing voltage steps activate voltage-dependent K(+) (Kv) channels by moving the voltage sensor, which triggers a coupling reaction leading to the opening of the pore. We constructed chimeric channels in which intracellular regions of slowly activating Kv2.1 channels were replaced by respective regions of rapidly activating Kv1.2 channels. Substitution of either the N-terminus, S4-S5 linker, or C-terminus generated chimeric Kv2.1/1.2 channels with a paradoxically slow and approximately exponential activation time course consisting of a fast and a slow component. Using combined chimeras, each of these Kv1.2 regions further slowed activation at the voltage of 0 mV, irrespective of the nature of the other two regions, whereas at the voltage of 40 mV both slowing and accelerating effects were observed. These results suggest voltage-dependent interactions of the three intracellular regions. This observation was quantified by double-mutant cycle analysis. It is concluded that interactions between N-terminus, S4-S5 linker, and/or C-terminus modulate the activation time course of Kv2.1 channels and that part of these interactions is voltage dependent.

摘要

去极化电压阶跃通过移动电压传感器来激活电压依赖性钾离子(Kv)通道,这会触发一个耦合反应,从而导致孔道开放。我们构建了嵌合通道,其中缓慢激活的Kv2.1通道的细胞内区域被快速激活的Kv1.2通道的相应区域所取代。替换N端、S4-S5连接子或C端会产生具有矛盾的缓慢且近似指数型激活时间进程的嵌合Kv2.1/1.2通道,该进程由一个快速成分和一个缓慢成分组成。使用组合嵌合体,这些Kv1.2区域中的每一个在0 mV电压下都会进一步减慢激活,而与其他两个区域的性质无关,而在40 mV电压下则观察到减慢和加速两种效应。这些结果表明三个细胞内区域存在电压依赖性相互作用。这一观察结果通过双突变循环分析进行了量化。得出的结论是,N端、S4-S5连接子和/或C端之间的相互作用调节了Kv2.1通道的激活时间进程,并且这些相互作用的一部分是电压依赖性的。

相似文献

1
Effects of Kv1.2 intracellular regions on activation of Kv2.1 channels.
Biophys J. 2004 Aug;87(2):873-82. doi: 10.1529/biophysj.104.040550.
2
Role of the S2 and S3 segment in determining the activation kinetics in Kv2.1 channels.
J Membr Biol. 2001 Jul 1;182(1):49-59. doi: 10.1007/s00232-001-0029-x.
4
Effects of intracellular magnesium on Kv1.5 and Kv2.1 potassium channels.
Eur Biophys J. 2005 Feb;34(1):42-51. doi: 10.1007/s00249-004-0423-2. Epub 2004 Jul 8.
5
Endogenous KCNE subunits govern Kv2.1 K+ channel activation kinetics in Xenopus oocyte studies.
Biophys J. 2006 Feb 15;90(4):1223-31. doi: 10.1529/biophysj.105.072504. Epub 2005 Dec 2.
6
K+ activation of kir3.1/kir3.4 and kv1.4 K+ channels is regulated by extracellular charges.
Biophys J. 2004 Oct;87(4):2407-18. doi: 10.1529/biophysj.103.039073.
7
Rate-limiting reactions determining different activation kinetics of Kv1.2 and Kv2.1 channels.
J Membr Biol. 2004 Mar 15;198(2):103-12. doi: 10.1007/s00232-004-0664-0.
8
Modulation of voltage sensitivity by N-terminal cytoplasmic residues in human Kv1.2 channels.
Eur Biophys J. 2002 Sep;31(5):365-72. doi: 10.1007/s00249-002-0220-8. Epub 2002 May 25.

引用本文的文献

1
Kv2.1 channels play opposing roles in regulating membrane potential, Ca channel function, and myogenic tone in arterial smooth muscle.
Proc Natl Acad Sci U S A. 2020 Feb 18;117(7):3858-3866. doi: 10.1073/pnas.1917879117. Epub 2020 Feb 3.
2
The Inhibitory Effects of Ca2+ Channel Blocker Nifedipine on Rat Kv2.1 Potassium Channels.
PLoS One. 2015 Apr 20;10(4):e0124602. doi: 10.1371/journal.pone.0124602. eCollection 2015.
3
Cytoplasmic domains and voltage-dependent potassium channel gating.
Front Pharmacol. 2012 Mar 23;3:49. doi: 10.3389/fphar.2012.00049. eCollection 2012.
4
Role of the S4-S5 linker in CNG channel activation.
Biophys J. 2010 Oct 20;99(8):2488-96. doi: 10.1016/j.bpj.2010.07.041.
7
Roles of surface residues of intracellular domains of heag potassium channels.
Eur Biophys J. 2009 Apr;38(4):523-32. doi: 10.1007/s00249-009-0402-8. Epub 2009 Jan 27.
8
10
Intracellular regions of potassium channels: Kv2.1 and heag.
Eur Biophys J. 2009 Mar;38(3):285-92. doi: 10.1007/s00249-008-0354-4. Epub 2008 Jul 8.

本文引用的文献

1
The principle of gating charge movement in a voltage-dependent K+ channel.
Nature. 2003 May 1;423(6935):42-8. doi: 10.1038/nature01581.
2
X-ray structure of a voltage-dependent K+ channel.
Nature. 2003 May 1;423(6935):33-41. doi: 10.1038/nature01580.
3
The Roles of N- and C-terminal determinants in the activation of the Kv2.1 potassium channel.
J Biol Chem. 2003 Apr 11;278(15):12769-78. doi: 10.1074/jbc.M212973200. Epub 2003 Jan 29.
4
Energetics of pore opening in a voltage-gated K(+) channel.
Cell. 2002 Oct 18;111(2):231-9. doi: 10.1016/s0092-8674(02)01013-9.
5
Coupling between voltage sensors and activation gate in voltage-gated K+ channels.
J Gen Physiol. 2002 Nov;120(5):663-76. doi: 10.1085/jgp.20028696.
6
The voltage-gated potassium channels and their relatives.
Nature. 2002 Sep 5;419(6902):35-42. doi: 10.1038/nature00978.
7
Tight steric closure at the intracellular activation gate of a voltage-gated K(+) channel.
Neuron. 2001 Nov 20;32(4):649-56. doi: 10.1016/s0896-6273(01)00487-1.
9
Voltage dependent activation of potassium channels is coupled to T1 domain structure.
Nat Struct Biol. 2000 May;7(5):403-7. doi: 10.1038/75185.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验