Ikuta Shigeru, Saitoh Toshiaki, Wakamatsu Souichi
Tokyo Metropolitan University, Computer Center, 1-1 Minami-Ohsawa, Hachioji-shi, Tokyo 192-0397, Japan.
J Chem Phys. 2004 Aug 22;121(8):3478-85. doi: 10.1063/1.1777217.
The geometric structures and isomeric stabilities of various stationary points in C(2)H(2)Si neutral and its cation and anion are investigated at the coupled-cluster singles, doubles (triples) [CCSD(T)] level of theory. For the geometrical survey, the basis sets used are of the Dunning's correlation consistent basis sets of triple-zeta quality (cc-pVTZ) for the neutral and cation. For the anions, the cc-pVTZ basis sets with diffuse functions (aug-cc-pVTZ) are used. The final energies are calculated by the use of the CCSD(T) level of theory with the aug-cc-pVTZ basis set at their optimized geometries. To lower lying neutrals and cations, the Dunning's correlation consistent basis sets of quadruple-zeta quality (cc-pVQZ) are also applied. Both the global minima of the C(2)H(2)Si neutral and cation, N-1 (C(2v):(1)A(1)) and C-1 (C(2v):(2)B(2)), respectively, are silacyclopropenylidene conformers, having a CCSi ring with a C[Double Bond]C double bond. No competitive stable isomers exist in the present C(2)H(2)Si neutral. In the cation, however, the second lowest lying isomer C-2 lies 10.8 kJ/mol above the most stable C-1. The vertical and adiabatic ionization potentials from the lowest lying neutral N-1 are 9.83 and 8.97 eV, respectively, at the CCSD(T)/cc-pVQZ level of theory. The electron addition to the N-1 does not result in the anion with positive (real) electron affinities. On the other hand, the electron addition to the N-2 isomer produces the global minimum anion A-1 (C(2v):(2)B(1)) with the positive electron affinities of 1.13 eV. The second lowest lying anion isomer A-2 with silylenylacetylene conformer, produced from an electron addition to the N-3 neutral, very well competes with the A-1 after the zero-point vibrational energy corrections. The energy difference between the two lowest lying isomers of the neutral and its anion, N-1 and A-1, is only 0.39 eV.
在耦合簇单双(三)激发[CCSD(T)]理论水平下,研究了C(2)H(2)Si中性分子及其阳离子和阴离子中各种驻点的几何结构和异构体稳定性。对于几何结构研究,中性分子和阳离子使用的基组是邓宁三重ζ质量的相关一致基组(cc-pVTZ)。对于阴离子,则使用带有弥散函数的cc-pVTZ基组(aug-cc-pVTZ)。最终能量是在优化几何结构下,使用aug-cc-pVTZ基组的CCSD(T)理论水平计算得到的。对于能量较低的中性分子和阳离子,还应用了邓宁四重ζ质量的相关一致基组(cc-pVQZ)。C(2)H(2)Si中性分子和阳离子的全局最小值,分别为N-1(C(2v):(1)A(1))和C-1(C(2v):(2)B(2)),均为硅环丙烯叉构象异构体,具有一个带有C[双键]C双键的CCSi环。在当前的C(2)H(2)Si中性分子中不存在竞争性的稳定异构体。然而,在阳离子中,第二低能量的异构体C-2比最稳定的C-1高10.8 kJ/mol。在CCSD(T)/cc-pVQZ理论水平下,从最低能量的中性分子N-1的垂直电离势和绝热电离势分别为9.83和8.97 eV。向N-1添加电子不会产生具有正(实)电子亲和能的阴离子。另一方面,向N-2异构体添加电子会产生全局最小值阴离子A-1(C(2v):(2)B(1)),其电子亲和能为1.13 eV。由向N-3中性分子添加电子产生的具有硅烯基乙炔构象异构体的第二低能量阴离子异构体A-2,在零点振动能校正后与A-1竞争激烈。中性分子及其阴离子的两个最低能量异构体N-1和A-1之间的能量差仅为0.39 eV。