Kasalová Veronika, Schaefer Henry F
Center for Computational Chemistry, University of Georgia, 1004 Cedar Street, Room 505, Athens, Georgia 30602-2525, USA.
J Comput Chem. 2005 Apr 15;26(5):411-35. doi: 10.1002/jcc.20171.
Developments in the preparation of new materials for microelectronics are focusing new attention on molecular systems incorporating several arsenic atoms. A systematic investigation of the As2Fn/As2Fn- systems was carried out using Density Functional Theory methods and a DZP++ quality basis set. Global and low-lying local geometric minima and relative energies are discussed and compared. The three types of neutral-anion separations reported in this work are: the adiabatic electron affinity (EAad), the vertical electron affinity (EAvert), and the vertical detachment energy (VDE). Harmonic vibrational frequencies pertaining to the global minimum for each compound are reported. From the first four studied species (As2Fn, n=1-4), all neutral molecules and their anions are shown to be stable with respect to As-As bond breaking. The neutral As2F molecule and its anion are predicted to have Cs symmetry. We find the trans F-As-As-F isomer of C2h symmetry and a pyramidalized vinylidene-like As-As-F2- isomer of Cs symmetry to be the global minima for the As2F2 and As2F2- species, respectively. The lowest lying minima of As2F3 and As2F3- are vinyl radical-like structures F-As-As-F2 of Cs symmetry. The neutral As2F4 global minimum is a trans-bent (like Si2H4) F2-As-As-F2 isomer of C2 symmetry, while its anion is predicted to have an unusual fluorine-bridged (C(1)) structure. The global minima of the neutral As2Fn species, n=5-8, are weakly bound complexes, held together by dipole-dipole interactions. All such structures have the AsFm-AsFn form, where (m,n) is (2,3) for As2F5, (3,3) for As2F6, (4,3) for As2F7), and (5,3) for As2F8. For As2F8 the beautiful pentavalent F4As-AsF4 structure (analogous to the stable AsF5 molecule) lies about 30 kcal/mol above the AsF3 . . . AsF5 complex. The stability of AsF(5) depends crucially on the strong As-F bonds, and replacing one of these with an As-As bond (in F4As-AsF4) has a very negative impact on the molecule's stability. The anions As2Fn-, n=5-8, are shown to be stable with respect to the As-As bond breaking, and we predict that all of them have fluorine-bridged or fluorine-linked structures. The zero-point vibrational energy corrected adiabatic electron affinities are predicted to be 2.28 eV (As2F), 1.95 eV (As2F2), 2.39 eV (As2F3), 1.71 eV (As2F4), 2.72 eV (As2F5), 1.79 eV (As2F6), 5.26 eV (As2F7), and 3.40 eV (As2F8) from the BHLYP method. Vertical detachment energies are rather large, especially for species with fluorine-bridged global minima, having values up to 6.45 eV (As2F7, BHLYP).
微电子新材料制备方面的进展正将新的注意力聚焦于包含多个砷原子的分子体系。使用密度泛函理论方法和DZP++质量基组对As2Fn/As2Fn-体系进行了系统研究。讨论并比较了全局和低能局部几何极小值及相对能量。本文报道的三种中性-阴离子分离类型为:绝热电子亲和能(EAad)、垂直电子亲和能(EAvert)和垂直脱附能(VDE)。报道了每种化合物全局极小值对应的谐振频率。从前四个研究物种(As2Fn,n = 1 - 4)来看,所有中性分子及其阴离子相对于As - As键断裂都是稳定的。预测中性As2F分子及其阴离子具有Cs对称性。我们发现C2h对称性的反式F - As - As - F异构体和Cs对称性的金字塔化类亚乙烯基As - As - F2-异构体分别是As2F2和As2F2-物种的全局极小值。As2F3和As2F3-的最低能极小值是Cs对称性的类乙烯基自由基结构F - As - As - F2。中性As2F4全局极小值是C2对称性的反式弯曲(类似Si2H4)F2 - As - As - F2异构体,而其阴离子预计具有不寻常的氟桥连(C(1))结构。中性As2Fn物种(n = 5 - 8)的全局极小值是通过偶极 - 偶极相互作用结合在一起的弱束缚复合物。所有这些结构都具有AsFm - AsFn形式,其中对于As2F5,(m,n)为(2,3);对于As2F6,(m,n)为(3,3);对于As2F7,(m,n)为(4,3);对于As2F8,(m,n)为(5,3)。对于As2F8,美丽的五价F4As - AsF4结构(类似于稳定的AsF5分子)比AsF3...AsF5复合物高出约30 kcal/mol。AsF(5)的稳定性关键取决于强As - F键,用As - As键取代其中一个(在F4As - AsF4中)对分子稳定性有非常负面的影响。阴离子As2Fn-(n = 5 - 8)相对于As - As键断裂是稳定的,并且我们预测它们都具有氟桥连或氟连接结构。根据BHLYP方法预测,零点振动能校正后的绝热电子亲和能分别为As2F为2.28 eV、As2F2为1.95 eV、As2F3为2.39 eV、As2F4为1.71 eV、As2F5为2.72 eV、As2F6为1.79 eV、As2F7为5.26 eV、As2F8为3.40 eV。垂直脱附能相当大,特别是对于具有氟桥连全局极小值的物种,其值高达6.45 eV(As2F7,BHLYP)。