Feng Edward H, Andersen Hans C
Department of Chemical Engineering, Stanford University, Stanford, California 94305, USA.
J Chem Phys. 2004 Aug 22;121(8):3582-97. doi: 10.1063/1.1773133.
We present a diagrammatic formalism for the time correlation functions of density fluctuations for an excluded volume lattice gas on a simple d-dimensional hypercubic lattice. We consider a multicomponent system in which particles of different species can have different transition rates. Our theoretical approach uses a Hilbert space formalism for the time dependent dynamical variables of a stochastic process that satisfies the detailed balance condition. We construct a Liouville matrix consistent with the dynamics of the model to calculate both the equation of motion for multipoint densities in configuration space and the interactions in the diagrammatic theory. A Boley basis of fluctuation vectors for the Hilbert space is used to develop two formally exact diagrammatic series for the time correlation functions. These theoretical techniques are generalizations of methods previously used for spin systems and atomic liquids, and they are generalizable to more complex lattice models of liquids such as a lattice gas with attractive interactions or polymer models. We use our formalism to construct approximate kinetic theories for the van Hove correlation and self-correlation function. The most simple approximation is the mean field approximation, which is exact for the van Hove correlation function of a one component system but an approximation for the self-correlation function. We use our first diagrammatic series to derive a two site multiple scattering approximation that gives a simple analytic expression for the spatial Fourier transform of the self-correlation function. We employ our second diagrammatic series to derive a simple mode coupling type approximation that provides a system of equations that can be solved for the self-correlation function.
我们提出了一种用于简单d维超立方晶格上排除体积晶格气体密度涨落时间关联函数的图解形式。我们考虑一个多组分系统,其中不同种类的粒子可以有不同的跃迁速率。我们的理论方法使用希尔伯特空间形式来描述满足细致平衡条件的随机过程的时间相关动力学变量。我们构造一个与模型动力学一致的刘维尔矩阵,以计算构型空间中多点密度的运动方程和图解理论中的相互作用。希尔伯特空间的波动向量的博利基用于为时间关联函数展开两个形式上精确的图解级数。这些理论技术是先前用于自旋系统和原子液体的方法的推广,并且它们可以推广到更复杂的液体晶格模型,例如具有吸引相互作用的晶格气体或聚合物模型。我们使用我们的形式体系来构建范霍夫关联函数和自关联函数的近似动力学理论。最简单的近似是平均场近似,它对于单组分系统的范霍夫关联函数是精确的,但对于自关联函数是一种近似。我们使用我们的第一个图解级数来推导一个双位点多重散射近似,该近似给出了自关联函数空间傅里叶变换的简单解析表达式。我们使用我们的第二个图解级数来推导一个简单的模式耦合型近似,该近似提供了一个可以求解自关联函数的方程组。