Suppr超能文献

用于多孔材料中受限流体晶格气体模型的平均场动力学理论。

Mean field kinetic theory for a lattice gas model of fluids confined in porous materials.

作者信息

Monson Peter A

机构信息

Department of Chemical Engineering, University of Massachusetts, Amherst, Massachusetts 01003, USA.

出版信息

J Chem Phys. 2008 Feb 28;128(8):084701. doi: 10.1063/1.2837287.

Abstract

We consider the mean field kinetic equations describing the relaxation dynamics of a lattice model of a fluid confined in a porous material. The dynamical theory embodied in these equations can be viewed as a mean field approximation to a Kawasaki dynamics Monte Carlo simulation of the system, as a theory of diffusion, or as a dynamical density functional theory. The solutions of the kinetic equations for long times coincide with the solutions of the static mean field equations for the inhomogeneous lattice gas. The approach is applied to a lattice gas model of a fluid confined in a finite length slit pore open at both ends and is in contact with the bulk fluid at a temperature where capillary condensation and hysteresis occur. The states emerging dynamically during irreversible changes in the chemical potential are compared with those obtained from the static mean field equations for states associated with a quasistatic progression up and down the adsorption/desorption isotherm. In the capillary transition region, the dynamics involves the appearance of undulates (adsorption) and liquid bridges (adsorption and desorption) which are unstable in the static mean field theory in the grand ensemble for the open pore but which are stable in the static mean field theory in the canonical ensemble for an infinite pore.

摘要

我们考虑描述限制在多孔材料中的流体晶格模型弛豫动力学的平均场动力学方程。这些方程所体现的动力学理论可被视为对该系统的川崎动力学蒙特卡罗模拟的平均场近似、一种扩散理论或一种动态密度泛函理论。长时间的动力学方程解与非均匀晶格气体的静态平均场方程解一致。该方法应用于两端开口且在发生毛细凝聚和滞后现象的温度下与体相流体接触的有限长度狭缝孔中限制的流体晶格气体模型。将化学势不可逆变化过程中动态出现的状态与从与吸附/解吸等温线上上下下的准静态进展相关的状态的静态平均场方程中获得的状态进行比较。在毛细转变区域,动力学涉及波动(吸附)和液桥(吸附和解吸)的出现,这些在开放孔的巨正则系综中的静态平均场理论中是不稳定的,但在无限孔的正则系综中的静态平均场理论中是稳定的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验