文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

[Interpretation of laboratory data during cryptic leishmaniasis in dog].

作者信息

Gravino A E

机构信息

Dipartimento di Scienze Cliniche Veterinarie, Università degli Studi di Napoli Federico II.

出版信息

Parassitologia. 2004 Jun;46(1-2):227-9.


DOI:
PMID:15305723
Abstract

Leishmaniasis is a zoonosis caused by an intracellular parasite belonging to the genus Leishmania. In Europe, Africa, South America and China, visceral leishmaniasis is caused by L. infantum. The vectors of leishmaniasis are phlebotomine sandflies belonging to the genera Phlebotomus. According to the World Health Organization there are 2 million new cases each year and 1/10 of the world's population is at risk of infection. Leishmaniasis is considered a zoonosis and human are generally accidental hosts. The animal reservoir includes rodents, dog and other mammals. Several studies have indicate that half of the dogs with antileishmanial antibodies have no signs of disease although, animal with subclinical infections are potentially infectious to sand flies. The factors determining susceptibility or resistence to visceral leishmaniasis remain unclear, but the genetics of the host may play a major role. Clinical signs are: intermittent fever, hepatosplenomegaly, skin lesions and ulcers, alopecia, onychogryphosis, anemia, thrombocytopenia and hypergammaglobulinemia. In mice, the outcome of infection depends on the polarized activation of one of two subsets of CD4+ T cells, Th1 or Th2, the subdivision into Th1 and Th2 cells is based on the pattern of cytokines that they produce. Th1 cells produce gamma interferon (IFN-gamma) and interleukin -2 (IL-2), whereas Th2 cells produce IL-4, IL-5, and IL-10. An important difference between susceptible and resistant mice is that the resistant mice are able to switch to a Th1 profile and control the disease. An important factor in the "decision" to form a Th1 or Th2 phenotype is the early cytokine environment, and IL-12 is one of the cytokines that contributes significantly to the establishment of the Th1 phenotype. Canine leishmaniosis is endemic in the Mediterranean basin and, in most cases is caused by the parasite Leishmania infantum. The main clinical findings are skin lesions, local or generalized lymphoadenopathy, loss of body weight, glomerulopathy, ocular lesions, epistaxis and lameness. Non pruritic skin lesions are the usual manifestation and several forms have been described, such as exfoliative dermatitis and alopecia, and ulcerative, nodular and pustular dermatitis. Seroepidemiological studies of canine leishmaniasis have revealed a large number of asymptomatic seropositive animals. Moreover in areas where leishmaniasis is highly endemic, high proportion of apparently healthy animals show low levels of anti-Leishmania antibodies. Others have regressive forms of the desease, and their antibody levels will decrease in the following months or years; still others maintain low levels of antibodies without developing the desease for many years. However, the total number of infected animals is unknown. Canine leishmaniasis is a major zoonosic parasitic disease, enzootic in the Mediterranean area, caused by the intracellular protozoan Leishmania infantum. The dog is the main reservoir host of the parasite. However, most infected dogs do not present any clinical signs, and there is evidence that Leishmania infection prevalence rates in areas of endemicity are higher than those ascertained by serological studies. Visceral leishmaniasis is becoming a real problem of public health because it is an opportunistic infection in immunocompromised patients and in human immunodeficiency virus-positive subjects. The detection of the extent of the infection, particularly among asymptomatic dogs, is of great importance for the control of leishmaniasis. PCR has been applied successfully in recent years to detect Leishmania spp. even in the cases with any of the clinical manifestation of leishmaniasis. Very recently, real-time PCR for Leishmania has been applied to evaluate the parasitic load of dog tissues both at the time of the diagnosis and during follow-up of the therapy and to measure cytokine mRNA levels in different clinical samples of infected and uninfected dogs.

摘要

相似文献

[1]
[Interpretation of laboratory data during cryptic leishmaniasis in dog].

Parassitologia. 2004-6

[2]
[Monitoring of canine leishmaniasis in northern Italy: an update from a scientific network].

Parassitologia. 2004-6

[3]
[Feline leishmaniasis: what's the epidemiological role of the cat?].

Parassitologia. 2004-6

[4]
Long-lasting protection against canine visceral leishmaniasis using the LiESAp-MDP vaccine in endemic areas of France: double-blind randomised efficacy field trial.

Vaccine. 2007-5-22

[5]
Canine visceral leishmaniasis: dog infectivity to sand flies from non-endemic areas.

Res Vet Sci. 2002-2

[6]
Longitudinal analysis of cytokine gene expression and parasite load in PBMC in Leishmania infantum experimentally infected dogs.

Vet Immunol Immunopathol. 2008-9-15

[7]
Interleukin-12 augments a Th1-type immune response manifested as lymphocyte proliferation and interferon gamma production in Leishmania infantum-infected dogs.

Int J Parasitol. 2005-1

[8]
PCR identification of Leishmania in diagnosis and control of canine Leishmaniasis.

Vet Parasitol. 2007-3-31

[9]
Canine visceral leishmaniasis: asymptomatic infected dogs as a source of L. infantum infection.

Acta Trop. 2009-11

[10]
TaqMan-based detection of Leishmania infantum DNA using canine samples.

Ann N Y Acad Sci. 2004-10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索