Hoffman Kathleen A
Department of Mathematics and Statistics, University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA.
Philos Trans A Math Phys Eng Sci. 2004 Jul 15;362(1820):1301-15. doi: 10.1098/rsta.2004.1382.
Elastic-rod models of DNA have offered an alternative method for studying the macroscopic properties of the molecule. An essential component of the modelling effort is to identify the biologically accessible, or stable, solutions. The underlying variational structure of the elastic-rod model can be exploited to derive methods that identify stable equilibrium configurations. We present two methods for determining the stability of the equilibria of elastic-rod models: the conjugate-point method and the distinguished-diagram method. Additionally, we apply these methods to two intrinsically curved DNA molecules: a DNA filament with an A-tract bend and a DNA minicircle with a catabolite gene activator protein binding site. The stable solutions of these models provide visual insight into the three-dimensional structure of the DNA molecules.
DNA的弹性杆模型为研究该分子的宏观性质提供了一种替代方法。建模工作的一个重要组成部分是确定生物学上可及的或稳定的解决方案。弹性杆模型的潜在变分结构可用于推导识别稳定平衡构型的方法。我们提出了两种确定弹性杆模型平衡稳定性的方法:共轭点法和特征图法。此外,我们将这些方法应用于两个内在弯曲的DNA分子:一个带有A序列弯曲的DNA细丝和一个带有分解代谢基因激活蛋白结合位点的DNA小环。这些模型的稳定解为DNA分子的三维结构提供了直观的认识。