Hu Qing, Williams Benjamin S, Kumar Sushil, Callebaut Hans, Reno John L
Department of Electrical Engineering and Computer Science and Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
Philos Trans A Math Phys Eng Sci. 2004 Feb 15;362(1815):233-47; discussion 247-9. doi: 10.1098/rsta.2003.1314.
We report our development of terahertz (THz) quantum cascade lasers (QCLs), in which the depopulation of the lower radiative level is achieved through resonant longitudinal optical (LO) phonon scattering. This depopulation mechanism, similar to that implemented in all the QCLs operating at mid-infrared frequencies, is robust at high temperatures and high injection levels. The unique feature of resonant LO-phonon scattering in our THz QCL structures allows a highly selective depopulation of the lower radiative level with a sub-picosecond lifetime, while maintaining a relatively long upper level lifetime (more than 5 ps) that is due to upper-to-ground-state scattering. The first QCL based on this mechanism achieved lasing at 3.4 THz (lambda approximately 87 microm) up to 87 K for pulsed operations, with peak power levels exceeding 10 mW at ca. 40 K. Using a novel double-sided metal waveguide for mode confinement, which yields a unity mode confinement factor and therefore a low total cavity loss at THz frequencies, we have also achieved lasing at wavelengths longer than 100 microm.
我们报告了太赫兹(THz)量子级联激光器(QCL)的研发情况,其中通过共振纵向光学(LO)声子散射实现了较低辐射能级的粒子数减少。这种粒子数减少机制与所有工作在中红外频率的QCL中所采用的机制类似,在高温和高注入水平下都很稳定。我们的太赫兹QCL结构中共振LO声子散射的独特特性,使得较低辐射能级能够以亚皮秒寿命实现高度选择性的粒子数减少,同时由于上能级到基态的散射,保持了相对较长的上能级寿命(超过5皮秒)。基于这种机制的首个QCL在脉冲工作模式下,在高达87 K的温度下实现了3.4 THz(波长约87微米)的激光发射,在约40 K时峰值功率超过10 mW。通过使用一种新型的双面金属波导进行模式限制,其模式限制因子为1,因此在太赫兹频率下总腔损耗较低,我们还实现了波长大于100微米的激光发射。