Suppr超能文献

一氧化氮介导高铁血红素还原的机制:亚硝酸盐与通用碱催化作用

Mechanisms of ferriheme reduction by nitric oxide: nitrite and general base catalysis.

作者信息

Fernandez Bernadette O, Lorkovic Ivan M, Ford Peter C

机构信息

Department of Chemistry and Biochemistry, University of California, Santa Barbara 93106-9510, USA.

出版信息

Inorg Chem. 2004 Aug 23;43(17):5393-402. doi: 10.1021/ic049532x.

Abstract

The reductive nitrosylation (Fe(III)(P) + 2NO + H(2)O = Fe(II)(P)(NO) + NO(2)(-) + 2H(+)) of the ferriheme model Fe(III)(TPPS) (TPPS = tetra(4-sulfonatophenyl)porphyrinato) has been investigated in moderately acidic solution. In the absence of added or adventitious nitrite, this reaction displays general base catalysis with several buffers in aqueous solutions. It was also found that the nitrite ion, NO(2)(-), is a catalyst for this reaction. Similar nitrite catalysis was demonstrated for another ferriheme model system Fe(III)(TMPy) (TMPy = meso-tetrakis(N-methyl-4-pyridyl)porphyrinato), and for ferriheme proteins met-hemoglobin (metHb) and met-myoglobin (metMb) in aqueous buffer solutions. Thus, it appears that such catalysis is a general mechanistic route to the reductive nitrosylation products. Two nitrite catalysis mechanisms are proposed. In the first, NO(2)(-) is visualized as operating via nucleophilic addition to the Fe(III)-coordinated NO in a manner similar to the reactions proposed for Fe(III) reduction promoted by other nucleophiles. This would give a labile N(2)O(3) ligand that hydrolyzes to nitrous acid, regenerating the original nitrite. The other proposal is that Fe(III) reduction is effected by direct outer-sphere electron transfer from NO(2)(-) to Fe(III)(P)(NO) to give nitrogen dioxide plus the ferrous nitrosyl complex Fe(II)(P)(NO). The NO(2) thus generated would be trapped by excess NO to give N(2)O(3) and, subsequently, nitrite. It is found that the nitrite catalysis rates are markedly sensitive to the respective Fe(III)(P)(NO) reduction potentials, which is consistent with the behavior expected for an outer-sphere electron-transfer mechanism. Nitrite is the product of NO autoxidation in aqueous solution and is a ubiquitous impurity in experiments where aqueous NO is added to an aerobic system to study biological effects. The present results demonstrate that such an impurity should not be assumed to be innocuous, especially in the context of recent reports that endogenous nitrite may play physiological roles relevant to the interactions of NO and ferriheme proteins.

摘要

已在中等酸性溶液中研究了高铁血红素模型Fe(III)(TPPS)(TPPS = 四(4 - 磺基苯基)卟啉)的还原亚硝化反应(Fe(III)(P) + 2NO + H₂O = Fe(II)(P)(NO) + NO₂⁻ + 2H⁺)。在没有添加或偶然存在亚硝酸盐的情况下,该反应在水溶液中与几种缓冲剂表现出一般碱催化作用。还发现亚硝酸根离子NO₂⁻是该反应的催化剂。在另一个高铁血红素模型系统Fe(III)(TMPy)(TMPy = 中位 - 四(4 - N - 甲基吡啶基)卟啉)以及在水性缓冲溶液中的高铁血红素蛋白高铁血红蛋白(metHb)和高铁肌红蛋白(metMb)中也证明了类似的亚硝酸盐催化作用。因此,似乎这种催化作用是形成还原亚硝化产物的一般机制途径。提出了两种亚硝酸盐催化机制。第一种机制中,NO₂⁻被认为是通过亲核加成作用于Fe(III)配位的NO,其方式类似于其他亲核试剂促进Fe(III)还原的反应。这将产生一种不稳定的N₂O₃配体,它水解生成亚硝酸,使原始亚硝酸盐再生。另一种提议是,Fe(III)的还原是通过NO₂⁻向Fe(III)(P)(NO)的直接外层电子转移实现的,生成二氧化氮和亚铁亚硝酰配合物Fe(II)(P)(NO)。由此产生的NO₂将被过量的NO捕获,生成N₂O₃,随后生成亚硝酸盐。发现亚硝酸盐催化速率对各自的Fe(III)(P)(NO)还原电位明显敏感,这与外层电子转移机制预期的行为一致。亚硝酸盐是NO在水溶液中自氧化的产物,并且在将水性NO添加到需氧系统以研究生物学效应的实验中是一种普遍存在的杂质。目前的结果表明,不应假定这种杂质是无害的,特别是鉴于最近有报道称内源性亚硝酸盐可能在与NO和高铁血红素蛋白相互作用相关的生理作用中发挥作用。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验