Li Xiaodong, Huang Jing, Yi Ping, Bambara Robert A, Hilf Russell, Muyan Mesut
Department of Biochemistry and Biophysics, University of Rochester School of Medicine, 601 Elmwood Ave., Rochester, NY 14642, USA.
Mol Cell Biol. 2004 Sep;24(17):7681-94. doi: 10.1128/MCB.24.17.7681-7694.2004.
The effects of estrogens, particularly 17beta-estradiol (E2), are mediated by estrogen receptor alpha (ERalpha) and ERbeta. Upon binding to E2, ERs homo- and heterodimerize when coexpressed. The ER dimer then regulates the transcription of target genes through estrogen responsive element (ERE)-dependent and -independent pathways that constitute genomic estrogen signaling. Although ERalpha and ERbeta have similar ERE and E2 binding properties, they display different transregulatory capacities in both ERE-dependent and -independent signaling pathways. It is therefore likely that the heterodimerization provides novel functions to ERs by combining distinct properties of the contributing partners. The elucidation of the role of the ER heterodimer is critical for the understanding of physiology and pathophysiology of E2 signaling. However, differentially determining target gene responses during cosynthesis of ER subtypes is difficult, since dimers formed are a heterogeneous population of homo- and heterodimers. To circumvent the pivotal dimerization step in ER action and hence produce a homogeneous ER heterodimer population, we utilized a genetic fusion strategy. We joined the cDNAs of ERalpha and/or ERbeta to produce single-chain ERs to simulate the ER homo- and heterodimers. The fusion ERs interacted with ERE and E2 in a manner similar to that observed with the ER dimers. The homofusion receptors mimicked the functions of the parent ER dimers in the ERE-dependent and -independent pathways in transfected mammalian cells, whereas heterofusion receptors emulated the transregulatory properties of the ERalpha dimer. These results suggest that ERalpha is the functionally dominant partner in the ERalpha/beta heterodimer.
雌激素,尤其是17β-雌二醇(E2)的作用是由雌激素受体α(ERα)和雌激素受体β(ERβ)介导的。与E2结合后,共表达时ERs会形成同源二聚体和异源二聚体。然后,ER二聚体通过构成基因组雌激素信号传导的雌激素反应元件(ERE)依赖性和非依赖性途径调节靶基因的转录。尽管ERα和ERβ具有相似的ERE和E2结合特性,但它们在ERE依赖性和非依赖性信号通路中表现出不同的反式调节能力。因此,异源二聚化可能通过结合各组成部分的不同特性为ERs提供新功能。阐明ER异源二聚体的作用对于理解E2信号传导的生理学和病理生理学至关重要。然而,在ER亚型共合成过程中差异确定靶基因反应是困难的,因为形成的二聚体是同源二聚体和异源二聚体的异质群体。为了规避ER作用中的关键二聚化步骤,从而产生同质的ER异源二聚体群体,我们采用了基因融合策略。我们连接ERα和/或ERβ的cDNA以产生单链ERs,以模拟ER同源二聚体和异源二聚体。融合ERs与ERE和E2的相互作用方式类似于ER二聚体。同源融合受体在转染的哺乳动物细胞中在ERE依赖性和非依赖性途径中模拟了亲本ER二聚体的功能,而异源融合受体则模拟了ERα二聚体的反式调节特性。这些结果表明,在ERα/β异源二聚体中,ERα是功能上占主导地位的伙伴。